CCE banner
 
Funded Research

Global monitoring, reporting, and verification (MRV) system for carbon emissions from natural gas flaring

Elvidge, Christopher (Chris): Colorado School of Mines (Project Lead)
Baugh, Kimberly: University of Colorado (Co-Investigator)
Ghosh, Tilottama: NOAA (Co-Investigator)
Hsu, Feng: NOAA (Co-Investigator)
Zhizhin, Mikhail: University of Colorado (Co-Investigator)
Germain, Stephane: GHGSat (Stakeholder)
Gordon, Deborah (Debbie): Rocky Mountain Institute (RMI) (Stakeholder)
Griffin, Karen: U.S. Energy Information Administration (Stakeholder)
Hamso, Bjorn: The World Bank (Stakeholder)
Howells, Martyn: World Bank Global Gas Flaring Reduction Initiative (GGFR) (Stakeholder)
Mezzano, Pietro: Oil and Gas Climate Initiative (Stakeholder)
Reuland, Frances (Fran): Rocky Mountain Institute (RMI) (Stakeholder)
Saunier, Stephanie: Carbon Limits (Stakeholder)
Xie, Hongjie: University of Texas at San Antonio (Stakeholder)

Project Funding: 2016 - 2019

NRA: 2015 NASA: Carbon Monitoring System   

Funded by NASA

Abstract:
NOAA has developed a prototype MRV (monitoring, reporting and verification) system for global gas flaring. The purpose of this project is to reduce the uncertainties in the carbon emission estimates and produce a consistent time series of annual CO2 emission estimates for individual flare sites spanning 2012 through 2018. The monitoring system is based near-infrared and short-wave infrared nighttime data collected by the Visible Infrared Imaging Radiometer Suite (VIIRS). Peak radiant emissions from gas flares occur near 1.62 um - center of the VIIRS M11 spectral band. Using detections in multiple spectral bands, the algorithm calculates temperature, source size and radiant heat. Flares are separated from biomass burning and industrial sites based on temperature and persistence. More than 7000 flares were found each year in 2012-2014. Fire each flaring site, annual average radiant heat is calculated from the cloud-free observation set. The current calibration is based on national level flaring data reported by Cedigaz. The uncertainty in the current estimates exceeds the year-to-year differences in flared gas volumes from individual countries, calling into question the estimates. It is believed that the large uncertainties arise from country level errors in the Cedigaz estimates. Methods: Nighttime VIIRS data will be collected on a series of test flares burning a precisely controlled natural gas flow rates. Measurements will be made over a range of view angles and three flow rates (low, medium and high). Additional test flare events will explore the effects of multiple flares inside a VIIRS pixel and the effects of black carbon. From this test set, a new calibration will be developed for estimating flared gas volumes. The calibration will then be applied to VIIRS data spanning 2012-2018 resulting in both site specific and national estimates of CO2 emissions from natural gas flaring. Significance: The project meets on of the primary calls in the announcement – for proposals to develop MRV systems using remotely sensed data. There are three primary applications for the gas flaring MRV:  A. Emission reductions to meet Intended Nationally Determined Contributions (INDC): Countries need to have historical records and annual updates of their CO2 emissions from gas flaring. The data will be used to gauge the level of effort to be placed on gas flaring reduction. For countries with large flaring emissions, reductions in flaring may be enough to meet their INDC. Other countries with small flaring volumes may decide to focus their efforts on achieving their INDC targets in other sectors. Accurate gas flaring emission data are key to these decisions. The MRV data will also be used to document the INDC emission reductions from gas flaring. B. Zero Routine Flaring by 2013: The gas flaring MRV data are crucial this initiative. The MRV data will be used to identify the routine flares. This will likely be done based on duty cycle. Certainly flares detected 50-100% of the time are routine. As the duty cycle declines, at some point the flare will be deemed to be śnon-routine. The VIIRS data can be used to distinguish routine versus non- routine flaring once a decision has been made on the duty cycle threshold. For the routine flares, these can be tracked over time to document changes indicating the flare has been extinguished or converted to non-routine status. C. Low Carbon Fuel Standards (LCFS): Site specific MRV data can be assigned to specific production fields as one of the data sources used to calculate the carbon intensity of fuels. This approach can be used to establish flaring baseline for specific production fields and tracking of changes in flaring that count towards carbon emission reductions.

Publications:

Elvidge, C. D., Bazilian, M. D., Zhizhin, M., Ghosh, T., Baugh, K., Hsu, F. 2018. The potential role of natural gas flaring in meeting greenhouse gas mitigation targets. Energy Strategy Reviews. 20, 156-162. DOI: 10.1016/j.esr.2017.12.012

Elvidge, C., Zhizhin, M., Baugh, K., Hsu, F., Ghosh, T. 2015. Methods for Global Survey of Natural Gas Flaring from Visible Infrared Imaging Radiometer Suite Data. Energies. 9(1), 14. DOI: 10.3390/en9010014

Elvidge, C., Zhizhin, M., Baugh, K., Hsu, F., Ghosh, T. 2019. Extending Nighttime Combustion Source Detection Limits with Short Wavelength VIIRS Data. Remote Sensing. 11(4), 395. DOI: 10.3390/rs11040395


More details may be found in the following project profile(s):