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ABSTRACT STUDY AREA DATA-DRIVEN MODELS Cumulative Rainfall Trade-Off of Landslides
Shallow landslides are a widespread phenomenon in the United States and the world. Often triggered by extreme The Mettman Ridge test site is in a landslide-prone area in the Oregon Coast Range, near Coos Bay, OR. It was selected We are developing data driven models aimed at predicting landslide activity. The models learn multi- - * Nolandside Terget
. . . . . . . . . . . . . . . . 3 ® Landslide * Non-target
precipitation events, they can be the primary sources of debris flows, and are generally a threatening source of hazards, because of two unique datasets deriving from over a decade of research at this site. An instrumental record of a rainfall- dimensional weather and geophysical patterns associated with historical landslides and estimate location- . R 0 ° o We partition the feature
causing loss of life, destruction of property and infrastructure, and affecting communities all across the nation. It is crucial triggered shallow landslide that occurred in a small catchment allowed testing the slope stability model and the search dependent probabilities for landslides under current or future weather and geophysical conditions. Our ¢ . 50% space into regions with
to accurately assess such hazards, particularly in light of expected climate and land use changes. The overall goal of this algorithm using field-measured physical parameters such as hydrological conditions, soil depth, and root strength. Across approach uses machine learning algorithms capable of determining non-linear associations between dependent g o : : ; :ﬁzselridpgbabi"ties of
NASA-funded project is to assess how climate change will impact extreme precipitation and landslide hazards, and what a larger area repeat field mapping provides an inventory of all the shallow landslides that occurred over a 10-year period. variables and landslide occurrence without requiring detailed knowledge of geomorphology. Our primary goal in ; As '0ngTr-term rainfalil E '
. . . . . . — eeas .. . . . ‘€ ti ises, rter- . .
risks those events will pose for natural and human systems in the future. Also during this 10-year period intensive research was conducted in the area, providing detailed information on soil, this phase of the project is to evaluate the predictive capabilities of data mining models in application to % - 7 e ol g shown are data points with
. . . .. . . . . .. . . . . . . . ® 1 above zero probability o
Here we explore the landsliding response of a prototype landscape located in the Oregon Coast Range (OCR) to vegetation, hydrological, and rainfall characteristics. This dataset thus presents a unique opportunity to apply all the sub- landslide activity, and to analyze if the approach will discover previously unknown variables and/or relationships = 2 i landslide. DZpending‘:)n the
hypothetical changes in intensity, duration, and frequency of extreme rainfall events. We adopt a mechanistic landslide models which estimate the local characteristics of soil, vegetation, and hydrology and to explore the response of the important to landslide occurrence, frequency or severity. 2 o § combination of factors, the
’ ’ ' . . . 3 : probability increases from
prediction procedure which couples a three-dimensional slope stability model with an efficient search algorithm to landscape to a wide range of rainfall and land use scenarios. The models include remote sensing and ground-based data, including rainfall, soils and land-cover, = :‘:V;ar':ﬁ:ebgfzgf”x;? %m— 2.9% ( majority of data
predict discrete shallow landslides. We use a landslide inventory collected by repeat field mapping over a 10-year period mp— T topographic (e.g. slope, elevation, and drainage area) information as well as urbanization data. In addition to the © - landslides increases @ p°‘““_)'”t°:4%'t°_5$'ﬁf°r
; . . . : . . . . o - . . . . i : especially heavy rainfall.
in an area with constraints on soil, vegetation, hydrological, and rainfall characteristics. In hind-cast mode, the procedure 124°W) Wiy > A ; a0 \ Coos Bay, OR dataset, the historical landslide dataset we used to build our preliminary models was compiled dramatically. -
reproduces the distribution of sizes and locations of the landslide inventory under a suite of rainfall and moisture S ¥ =l iy f { "‘ — e UL N from City of Seattle landslide files, United States Geological Survey reports, newspaper articles, and a verified
characteristics representative of the observation period. We use projections of precipitation extremes under different Pacific ‘ T A e T L i : subset of the Seattle Landslide Database that consists of all reported landslides within Seattle, WA, between 3 260 400 600 800 1000
climate change scenarios to generate landslide forecasts and explore the sensitivity of landslide abundance, size and Ocean I \bq RN W T WS 1948 and 1999. Most of the landslides analyzed to-date are shallow. 1606y Clsmsizive Gsiuisiibriscts 3Day Peried, 881 {ack o T e
location to the intensity, duration, and frequency of rainfall events, as well as to antecedent moisture conditions, N . ] o G ASTO ==\ ._.. ' Using statistical analysis and unsupervised clustering methods we have thus far identified Similarlf\f{ high 3-daycu||:1ula:ve rainfall, 1s-nayCumu1aEﬁ§mmmpﬁor:ns-naypeﬁua.m
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resulting from the different scenarios. LSS RN - 7 subsets of weather conditions that lead to a significantly higher landslide probability in the pifferent &-month conditions N
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We also present progress in the development of a data-driven approach to understanding landslide activity and the ey REETR R - Seattle region, and have developed statistically predictive models for individual storms. N Mot .
response to changes in extreme precipitation in an evolving climate. Resultant models forecast landslides based on a = 3 < W ‘ A4 A p—— i [ towsodaymintal : . e <hortterm rainall
combination of remote sensing data and historical surface observations including weather patterns, landcover and [N v -y O E e P . | test1s2Days | - T Landslide incidence is high g woy Pveryfewlandslides ) et T — alre:zysaturated ol >
lithology, and topographic attributes. We present spatially explicit results from the application of a non-linear classifier (a i R Y B =3 R 7 Wy - 1869 <= 1869 5 o] . g . o . e high probability of
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.We implement a spatial seml-s'uperwsed nonlinear classifier by | jnearly separable data Hyper-plane: Linearly non-separable data . Topographic attributes:
using a Support Vector Machine (SVM). The feature vector x, ) _ b ; .
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2 We train the classifier on a subset of the Coos Bay, OR, landslide sign( f(x)) e O — Orientations
= dataset. Because of the limited temporal span of observations, we .’ & * Regional attributes:
£ define the observed landslides as positive examples and areas ' ) ¢:R* > R — Vegetation -
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1 S E— parameter space for a radial-basis function, and use a 10-fold feature space of the form  (xez)’ = (x} N2xpx,,x]) — Landuse
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unseen) landscape where each pixel is then assigned to be a optimization: Pm—
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Examples of size, location, and impacts of shallow landslides: a) grasslands near Briones, CA; b) de-forested slopes near observations mapped onto high-resolution Lidar-derived topographic data; c) the instrumented CB-1 experimental first P g P Subject to {((wex;) +) — Spatial pyramid Example: slope and std(slope)

from a common mechanistic relative landslide potential model ~ 100 dimensions at the fine and coarse scales

(SHALSTAB). The performance is very promising: many of the
observed landslides are captured, the predictions consistently

Chehalis, WA, 2007, $57 million in property damage, no drinking water for months; c) Pacifica, CA, 1982, 3 fatalities ($66 order catchment before and after the November 1996 storm, which triggered a shallow landslide that destroyed the site;
million in damage and 25 fatalities over the San Francisco Bay Area); d) Brazil, Rio de Janeiro region, 2011, 1000+ fatalities. d) Intensity duration frequency (IDF) curves, derived from historical rainfall data from the nearby Allegany, OR, rain gauge.

» Classify data as in the linear case

track those from the mechanistic model, and over-prediction is OCstdy%ic?escrriaptorincludes physical attributes and derivatives at fine and coarse scales. Detail
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We adopt and test a novel procedure which couples a three-dimensional slope stability model that captures the basic current soil and vegetation conditions. We then plot the landslide size distributions and the topographic index _ g , :Under prediction training phase)
physics of shallow landsliding, with a new and efficient deterministic search algorithm that can predict discrete shallow e : . . . o * Enumerate mapping and b ° Tracks on slope
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regional scale. Sub-models are also defined to produce spatial data of pore water pressure, soil depth, and root strength. landslides to generally become more abundant, larger in size, and to move further down the valley axis. We present here . Use kfold crossovalidation T - s cantous L ) eaaal” Legend ?:::‘ft;?o”ggped
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SOCIO-ECONOMIC IMPACTS

Oregon’s SLIDO-2 database
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e Nodes: landscape cells annotated by driving forces
e Fdges: resistive forces between neighboring grid cells
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= Use regional climate models (e.g. NARCCAP) to compile precipitation statistics

Compare across models and to observations

= Repeat for areas where orographic precipitation is dominant
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= Understand how IDF curves may change in both cases
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Repres.ent data B g " . = = Test on prototype landscape to see landslide response
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Explore models which include vegetation, evapotranspiration, soil moisture

depends on the Z W Z W

application » Explore models which simulate the effects of climate change on vegetation [_]Source areas
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= Explore new remote sensing techniques to better quantify soil moisture, and
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g 0.4 = Examples of planned developments:
. . . . . e a) Shallow landslide inventory from November 1996 in Douglas County, OR, mapped onto 1-m Lidar-derived topographic data;
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We want to fmd the IandS“de |ndlcat0rs X WhICh have 0.3~ B b) Detail of aerial imagery for Douglas County, OR, showing contrasting vegetation type and age.
a factor of Safety <1 c) Historical observed 6-hour block yearly maxima from the NOAA CPC gridded hourly dataset spanning the years 1948-2002
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The mechanistic, deterministic landslide prediction procedure: a) three-dimensional slope stability model; b) graph ?OD 10 10 o 10" 1o .o ACKNOWLEDGEMENTS
representation; c) graph partitioning example; d) matrix-based factor of safety calculation and optimization. <€—— Steep slope albsintheta (m) High drainage area =—>
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* Denotes that predicted distributions are statistically indistinguishable from the observations according to 2-sample K-S test




