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ABSTRACT
Shallow landslides are a widespread phenomenon in the United States and the world. Often triggered by extreme

precipitation events, they can be the primary sources of debris flows, and are generally a threatening source of hazards,
causing loss of life, destruction of property and infrastructure, and affecting communities all across the nation. It is crucial
to accurately assess such hazards, particularly in light of expected climate and land use changes. The overall goal of this
NASA‐funded project is to assess how climate change will impact extreme precipitation and landslide hazards, and what
risks those events will pose for natural and human systems in the future.

Here we explore the landsliding response of a prototype landscape located in the Oregon Coast Range (OCR) to
hypothetical changes in intensity, duration, and frequency of extreme rainfall events. We adopt a mechanistic landslide
prediction procedure which couples a three‐dimensional slope stability model with an efficient search algorithm to
predict discrete shallow landslides. We use a landslide inventory collected by repeat field mapping over a 10‐year period
in an area with constraints on soil, vegetation, hydrological, and rainfall characteristics. In hind‐cast mode, the procedure
reproduces the distribution of sizes and locations of the landslide inventory under a suite of rainfall and moisture
characteristics representative of the observation period. We use projections of precipitation extremes under different
climate change scenarios to generate landslide forecasts and explore the sensitivity of landslide abundance, size and
location to the intensity, duration, and frequency of rainfall events, as well as to antecedent moisture conditions,
resulting from the different scenarios.

We also present progress in the development of a data‐driven approach to understanding landslide activity and the
response to changes in extreme precipitation in an evolving climate. Resultant models forecast landslides based on a
combination of remote sensing data and historical surface observations including weather patterns, landcover and
lithology, and topographic attributes. We present spatially explicit results from the application of a non‐linear classifier (a
support vector machine constructed using topographic, soil, and vegetation attributes) to the OCR dataset and compare
the results to the existing landslide inventory. Finally, we address the need for eco‐atmo‐geo‐hydrological models to
capture the linkages between climate, vegetation, and the landscape.

Examples of size, location, and impacts of shallow landslides: a) grasslands near Briones, CA; b) de‐forested slopes near
Chehalis, WA, 2007, $57 million in property damage, no drinking water for months; c) Pacifica, CA, 1982, 3 fatalities ($66
million in damage and 25 fatalities over the San Francisco Bay Area); d) Brazil, Rio de Janeiro region, 2011, 1000+ fatalities.

a. b.

c. d.

SHALLOW LANDSLIDE PREDICTION PROCEDURE
We adopt and test a novel procedure which couples a three‐dimensional slope stability model that captures the basic

physics of shallow landsliding, with a new and efficient deterministic search algorithm that can predict discrete shallow
landslides. The slope stability model is fully mechanistic, and considers resistances acting on all sides of a discretized
slope element. It is applicable to gridded data, is parsimonious in its parameterization, and thus is easily applicable to the
regional scale. Sub‐models are also defined to produce spatial data of pore water pressure, soil depth, and root strength.
The search algorithm is based on spectral graph theory and is fully deterministic. The landscape and all the landslide‐
relevant spatial attributes are represented as a weighted undirected graph. Spectral clustering is then used to aggregate
grid cells which together minimize a factor of safety for an exponential reduction in complexity.

‐ Instrumented:
• Piezometers
• Rain gauges
• Weirs

‐ Sprinkling 
experiments

‐ Mapped landslides
‐ Decade of research

STUDY AREA
The Mettman Ridge test site is in a landslide‐prone area in the Oregon Coast Range, near Coos Bay, OR. It was selected

because of two unique datasets deriving from over a decade of research at this site. An instrumental record of a rainfall‐
triggered shallow landslide that occurred in a small catchment allowed testing the slope stability model and the search
algorithm using field‐measured physical parameters such as hydrological conditions, soil depth, and root strength. Across
a larger area repeat field mapping provides an inventory of all the shallow landslides that occurred over a 10‐year period.
Also during this 10‐year period intensive research was conducted in the area, providing detailed information on soil,
vegetation, hydrological, and rainfall characteristics. This dataset thus presents a unique opportunity to apply all the sub‐
models which estimate the local characteristics of soil, vegetation, and hydrology and to explore the response of the
landscape to a wide range of rainfall and land use scenarios.

RESULTS
We sample the rainfall intensity duration frequency (IDF) curves and run the landslide prediction procedure with

current soil and vegetation conditions. We then plot the landslide size distributions and the topographic index
distributions for varying storm durations, return periods, and antecedent moisture conditions.

Results indicate that increasing the duration, the return period, or the antecedent moisture conditions, causes
landslides to generally become more abundant, larger in size, and to move further down the valley axis. We present here
a sample of these results.

a.

b.

c. d.

The test area in the Oregon Coast Range: a) location of the Metman Ridge; b) landslide inventory from ten years of
observations mapped onto high‐resolution Lidar‐derived topographic data; c) the instrumented CB‐1 experimental first
order catchment before and after the November 1996 storm, which triggered a shallow landslide that destroyed the site;
d) Intensity duration frequency (IDF) curves, derived from historical rainfall data from the nearby Allegany, OR, rain gauge.

DATA‐DRIVEN MODELS
We are developing data driven models aimed at predicting landslide activity. The models learn multi‐

dimensional weather and geophysical patterns associated with historical landslides and estimate location‐
dependent probabilities for landslides under current or future weather and geophysical conditions. Our
approach uses machine learning algorithms capable of determining non‐linear associations between dependent
variables and landslide occurrence without requiring detailed knowledge of geomorphology. Our primary goal in
this phase of the project is to evaluate the predictive capabilities of data mining models in application to
landslide activity, and to analyze if the approach will discover previously unknown variables and/or relationships
important to landslide occurrence, frequency or severity.

The models include remote sensing and ground‐based data, including rainfall, soils and land‐cover,
topographic (e.g. slope, elevation, and drainage area) information as well as urbanization data. In addition to the
Coos Bay, OR dataset, the historical landslide dataset we used to build our preliminary models was compiled
from City of Seattle landslide files, United States Geological Survey reports, newspaper articles, and a verified
subset of the Seattle Landslide Database that consists of all reported landslides within Seattle, WA, between
1948 and 1999. Most of the landslides analyzed to‐date are shallow.

Using statistical analysis and unsupervised clustering methods we have thus far identified
subsets of weather conditions that lead to a significantly higher landslide probability in the
Seattle region, and have developed statistically predictive models for individual storms.

We implement a spatial semi‐supervised nonlinear classifier by
using a Support Vector Machine (SVM). The feature vector
consists of topographic attributes such as slope, drainage area,
curvature, topographic index, soil depth, root strength, at both
fine and course scales. Also included are textural attributes such as
local entropy, standard deviation, and range.

We train the classifier on a subset of the Coos Bay, OR, landslide
dataset. Because of the limited temporal span of observations, we
define the observed landslides as positive examples and areas
neighboring these landslides as negative examples. We search a
parameter space for a radial‐basis function, and use a 10‐fold
cross‐validation scheme.

The classifier is then applied to the remaining (previously
unseen) landscape where each pixel is then assigned to be a
landslide or a non‐landslide cell. We present the results overlaying
a map showing the observed landslides, as well as the predictions
from a common mechanistic relative landslide potential model
(SHALSTAB). The performance is very promising: many of the
observed landslides are captured, the predictions consistently
track those from the mechanistic model, and over‐prediction is
reduced.

SOCIO‐ECONOMIC IMPACTS
Oregon’s SLIDO‐2 database

contains the location of ~3400
historical landslides with information
on the socio‐economic impacts and
damage caused. For each landslide,
we have identified the characteristics
of the population and infrastructure
surrounding the landslides
(population density, roads, railroads,
land cover). These characteristics,
together with the physical
characteristics of the landslide
locations, will be correlated to the
amount or damage that a landslide or
weather event has caused. We will
look for an association between
damage and event severity and
duration. At the same time, we will be
able to identify regions that are
particularly at risk. The two images
shown here illustrate some of the
contents of this dataset. The map
show the pattern of where recorded
landslides have occurred and the bar
graph shows the types of damage
caused by landslides along roads.
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a.

b.

c.

d.

The mechanistic, deterministic landslide prediction procedure: a) three‐dimensional slope stability model; b) graph
representation; c) graph partitioning example; d) matrix‐based factor of safety calculation and optimization.

 Use regional climate models (e.g. NARCCAP) to compile precipitation statistics

 Compare across models and to observations

 Repeat for areas where orographic precipitation is dominant

 Understand how IDF curves may change in both cases

 Test on prototype landscape to see landslide response

 Identify regional scale test area with high‐resolution topographic data, 
landslide inventory, and well constrained soil and vegetation characteristics

 Generate precipitation statistics for specific climate scenarios (e.g. NASA 
NEWS)

 Test at regional scale

 Continue data‐driven spatial classification approach with regional‐scale dataset

 Continue developing weather‐based models, focusing on developing 
probabilistic predictions for landslide activity for different weather patterns

 Integrate data‐driven spatial and temporal classifiers

 Quantifying qualitative damage descriptions on a numerical intensity scale.

 Develop a model that can estimate the amount of damage from a weather and 
landslide prediction

 Explore models which include vegetation, evapotranspiration, soil moisture

 Explore models which simulate the effects of climate change on vegetation

 Explore new remote sensing techniques to better quantify soil moisture, and 
vegetation type and age

NEXT STEPS

c.

Examples of planned developments:
a) Shallow landslide inventory from November 1996 in Douglas County, OR, mapped onto 1‐m Lidar‐derived topographic data;
b) Detail of aerial imagery for Douglas County, OR, showing contrasting vegetation type and age.
c) Historical observed 6‐hour block yearly maxima from the NOAA CPC gridded hourly dataset spanning the years 1948‐2002


