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Renewed inte
Importance of

It is an old fradition, but has
seen arebirth as an
interdisciplinary science in the
field of systems ecology,
biometeorology, environmental
biology and physiological
ecology.

Due to feedbacks to climate,
phenological responses to
weather and anthropogenic
climate change have strong
societal relevance.
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Phenology influences climate —
ecosystem feedbacks

Competition and community structure €

—> Litterfall, carbon and nutrient cycling

Below-canopy abiotic environment
—> (solar radiation, air and soil temperature,
throughfall and soil moisture)

Development and
senescence of foliage

v l —> Surface roughness
Phenology —> Surface albedo

Physiological activity €

of canopy

Photosynthesis Evapotranspiration Bowen ratio VOC
CO, fluxes H,O fluxes Energy fluxes Emissions
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Climate €—— Weather (—I

Richardson ef al. 2013 AFM
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growing season
make frees
grow biggere
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Winter chilling - cGDD - photoperiod - CDD

Earlier Persistent
spring summer

Temperature

Plants & animals worldwide are tracking
Warmer the earlier onset of spring by shifting the
winter timing of their spring activities

Time of Year




Ecosystem respiration reduces
photosynthetic gains of a longer
growing season by ~50%
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Growing season length anomaly (d) Growing season length anomaly (d)

Richardson et al. 2010 Philosoph. Trans. R. Soc.



Feedbacks between temperature,
albedo, and ecosystems enhance
warming in the northern latitudes

Greenhouse warming -> reduced albedo -> increased
warming and vegetation change (e.g., Chapin et al. 2008)

Climate seasonality has effectively moved Arctic and
Boreal ecosystems ~7 degrees |latitude further south,
causing increased greenness (Xu Liang et al. 2013)

Arctic woody plant cover has already begun to increase
and projections suggest a 50% increase in area of woody
plants by 2050 (Pearson et al. 2013)




Temperature and NDVI throughout
northern lands are increasing

Zonally averaged PAP mean temperature (K)
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Seasonality of NDVI has decreased as
a result of greening

Northern Hemisphere

—— 1982—-1985 mean
=== 1996-1999 mean
— 2005-2008 mean

Jeong et al. 2011 Global Change Biology



Decreased seasonality In temperature
and NDVI are equivalent to moving
arctic and boreal ecosystems 7° south

Latitude (° N)
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Vegetation greening throughou
northern latitudes
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Distribution of Arctic Vegetation

Current Future
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Satellite Microwave Detection of Changing Frozen Season Constraints to Productivity

J. Kimball, Y. Kim (UMT), K. Didan (UA), K. McDonald (CUNY)

* 132-yr (1979-2010) record of global daily landscape freeze-thaw (FT) dynamics developed from
multi-sensor data (SMMR, SSM/I, AMSR-E)

* FT record defines frozen temperature constraints to northern growing seasons
* Longer non-frozen seasons promote 2NDVI summer growth in cold temperature limited areas;

correlation reduced or reversed where growth is limited by water supply

Correlation (r): Non-frozen season vs
NDVI growth

Climate constraints to NPP from global
reanalysis (NCEP)

Correlation (r)

B Strong positive

. Positive
Negative

B Strong negative

1Global FT record: http://freezethaw.ntsg.umt.edu
2V|P Satellite NDVI record: http://phenology.arizona.edu



Satellite Microwave Detection of Pan-Arctic Open Water Inundation Changes

J. Kimball, J. Watts, L. Jones (UMT), K. McDonald (CUNY)

Inundation Trends P e R

Satellite (AMSR-E) retrievals of daily
fractional open water cover (Fw) used
for monitoring inundation changes
(2003-2010)
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Fw data capture large seasonal &
annual inundation dynamics missing
from static open water maps
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Satellite Microwave Vegetation Optical Depth (VOD) Phenology

VOD Start of Season & NDVI Greenup
2004 - 2007 Ecoregion (Level lll) Means

VOD

Jan1 Mar 1 May 1 Jul1 Sep 1 Nov 1 Dec 31

* VOD measures canopy attenuation of
microwave emissions.

* Sensitive to canopy biomass structure and
water content changes.

* Synergistic use of microwave and optical-IR
data enhances LSP monitoring and
understanding.

Start of Season

GPP & Reco Start of Season - Day of Year
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Cropland VOD, NDVI & Tower Flux Time Series
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300 | Réés -4 \VOD start of
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correlated with
tower GPP and
ecosystem
respiration.

200 -

100

o Regression Results
GPP-VOD: ¥ = 0.61, p<0.01, RMSE = 5.8 weeks
Reco-VOD: r’ = 0.44, p<0.01, RMSE = 7.0 weeks
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VOD Start of Season - Day of Year

Source: Jones M.O. et al., 2012 Rem. Sens. Environ., 115



Moving further south: Trends in the
onset of greenness 1982-2008
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day vear™!

SOS shows widespread
142 <: negative trends north of
36-40°N

36

42

SOS shows no-trend or
<: positive trends South of
36-40°N

Dragoni, D., A.F. Rahman,
and H.P. Schmid, 2010
AmeriFlux/NACP Annual
meeting
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A similar spatial pattern was seen using different AVHRR processing by:
Zhang et al. 2007 GRL and Jeong et al. 2011 GCB




Phenology modeling using onset of greenness from MODIS

Start of season:
Adva j\tepgl on,average 1 weeksince
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« Aretfrospective analysis of the vegetation phenology in New
England from 1960 to 2010 suggests a significant advancement
of Start of season (~ 1 week/50 years)

« Similar trends were not found for the end of season or growing
season length.

Yang, Mustard, Tang and Xu (2012) JGR-Biogeosciences



For the United States, a growing

season extension Is evident

Northern Hemisphere

— 1982-1985 mean
=== 1996-1999 mean
— 2005-2008 mean
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Jeong et al. 2011 Global Change Biology



End of season trends are significant
throughout much of the USA

100° W 90° W 80° W 70°W
T T T
EOS trends (days year-1)
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Dragoni and Rahman (2012) AgForMet



Environmental controls on the end of season
decrease with increasing latitude

- y=0.01x-0.34 o, .
L 12=0.84

35 40 45 50
Latitude(°N)

150 200
CDD (°C)
Dragoni and Rahman (2012) AgForMet




Fine-grain spatial patterns in
phenology are required to attain
further understanding

Mean growing Season Length (days)
from Ganguly et al. 2010

Elmore et al. (2012) GCB




Average phenology from Landsat
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Fisher et al. 2006 RSE; ElImore et al. 2012 GCB; Melaas et al. 2013 RSE



N
Physiographic Provincest
Blue Ridge

- Coastal Plain

Piedmont Plateau

Ridge and Valley
Chesapeake Bay
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Annual phenology from Landsat

Pixel Count

100 150 200 250 300
Cloud-free observations DOY 80-340

Melaas, Friedl, and Zhu 2013 RSE



Landsat phenology correlates
well with MODIS phenology for
deciduous forest pixels

Average spring onset Annual anomaly in spring onset

' MODIS pixel:
5.7 days

Landsat Spring Anomaly

Landsat Date of Onset

-15 -10 -5 0 5 10
110 MODIS Spring Anomaly - Melaas et al. 2013
110 120 130 140 150 160 170
MODIS Date of Onset

Fisher et al. 2007 RSE Melaas et al. 2013 (NASA TEP)




Landsat phenology anomalies track
observations made at Harvard Forest

R? = 0.80 ,/ R2 = 0.80
RMSE = 3.0 ) RMSE = 2.0
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Phenocam

Automated observations that can be integrated across
mulfiple organisms to give canopy-level information

Understanding and predicting the impacts of climate
change on plants and ecosystems requires better data
with which predictive models of phenology can be
developed and tested

Andrew Richardson dnd Phenmocdm
https://phenocam.sr.unh.edu/webcam/




Camera greenness vs. observer records

Uncertainties inherent in both

. % .o &
o\° ’ ...o .:.ﬂ: }. ?&{ ".
e 13 [ o B ﬁ N ‘;.";."%‘?,,.
R : ‘i N *
g ; 8 on
2 12 [ .
g ’} 4y
oo : gongins §oh,
1 1 -r.:v’ ‘00....?.¥ OM:‘);%.‘?’ ‘00.... '. {.’.30?
i . . .. . | . . .%.... | . . . . . .: .
5008 2008.5 © 2009 | 2010

Harvard Forest (2008-2009)

BB = 50% budburst; 75 = 50% of leaves 75% of final

length; LC = 50% leaf color

Slide provided by Andrew Richardson



Canopy greenness parallels canopy
ohotosynthesis from eddy covariance

WINTER SPRING AUTUM

\
erCam 05/30/07 12:35:03
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Slide provided by Andrew Richardson




Canopy color and canopy chemistry appear 1o be
“decoupled” in this example from Martha's Vineyard, MA

)

Chlorophyll
Carotenoids

Total Chlorophyll (ug/cm
Carotenoids (u,g/cmz)

200

Day of Year

Yang, Tang and Mustard, in review Brown University



Plants grown under an extended
ohotoperiod do not lose
ohotosynthetic capacity

A Grown at 25°C

cmax

Relative V

® Natural photoperiod
O Extended photoperiod

1 1] | | - N

150 175 200 225 250 275 300

Day of Year

Bauerle et al. 2012 PNAS



Aspects of Balsam Poplar
phenology are defermined
by photoperiod

ﬁCommon Garden

@ Population
Sample Site

Olson et al. 2012 Molecular Ecology
Keller et al. 2012 Mol. Biol. Evol.
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Gigavision.org




Glgavision.or

! PhenoTag
|| Active Bookmark | Fitter Category v | Fitter State v
Category:  Hoary | v || Name l State I Category I Events |~
g e [444} Iz Working | Atreeof | 0
Date Active:[5127/2010 09:5¢ ] 426 Working | Atree of | 0
B State:v . Work v 427 Working | Atreeof | 0
Description: 428 Working | Atree of | 0
k | 429 Working | Atreeof | 0
| 430 Working | Atreeof @ 0
Events 431 Working | Atreeof | 0
Leaf-FirstLeaf | X.[4/26/2010 | Go| | 432 Working | Atreeof | 0
| Leaf-100%Start 25/27&010 Gol| || 433 Working | Atreeof | 0
Leaf-FirstTurn X |6/09/2010 Go||| 434 Working | Atreeof | 0
Leaf-100%Dead | X [10/21/2010 Go 235 Working | Atree of | 0
Flower-FirstFlow| X [5/03/2010 Go 236 Working | Atree of | 0
Flower-100%0p{,. X.|5/27/2010 | Go :
Fiower r.(stc;y;‘sTGIOGIZNO l Go 437 Working | Atreeof | 0
: | Flower-100%Dedq, X |6/23/2010 Gol| | 438 Working | Atreeof | 0
[ [ta][m] tosaimages | May 02 2010 12:0( Speed: ;——— — —1| 439 Working | Atreeof | 0
|Aer 20 |Aer 25 |Aer 30 |May 5 |May 10 |May 15 442 Working | Atreeof | 0
T _______@ ________________ R O 443 Working | Black Oa | 0
. . May 03, 2010 11:46 ( Image: May 02, 2010 12:00) ) 244 Working | Hoary PL | 0 5
& d 444 Working Hoary PL 8 A
Apr 17,2010 - May 18, | Hour | 12 Hrs | Day | Week |Month & Mns | Year | Al

ILoadng Bookmark 444 [ Built with TimeScience.




Its an inferesting fime
fo study phenology

Long records of course-resolution data are available
from which to infer changes in growing season length

New access to medium resolution data (Landsat)
sufficient to measure average and annual phenology
of forest stands

New technologies making phenological observations
of forest stands and individual organisms practical,
combined with new analyfical and high throughput
sequencing techniques

Important questions regarding tree adaptation to
changes in climate, searching for the genotype-
phenotype-environment map




Next steps

Contfinue working to replace time on the x-axis with
environmental parameters (and photoperiod).

Incorporate these parameters into terrestrial biosphere
models with greater detail (Richardson et al. 2012
GCB)

Work to bring new types of observations into
phenology research (e.g., SMAP)

Work with plant ecologists to understand and
incorporate genotype-phenotype relationships in
models of vegetation change
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