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Figure 4.  Comparison of GLAS 
lidar waveforms and the best fit 
synthetic vegetation profile 
using least square differences.  
Synthetic profiles were 
generated with our three 
dimensional canopy model.  
Each synthetic vegetation 
profile is generated using a 
geometric series, in this case 
De Liocourt values (q).  

Estimation of Tropical Forest Structure 
Using the Full Waveform Lidar from ICESat

Introduction

Summary and Future Work

Background

The Amazon basin contains the world’s largest continuous 
tropical forest constituting 40% of the remaining area for this 
ecotype and is made up of heterogeneous canopies and forest 
communities with unique assemblages of tree species, complex 
vegetation dynamics and history, and high biodiversity. Forest 
structural components include canopy geometry and tree 
architecture, size distributions of trees, and are closely linked 
with ecosystem functioning. The dynamic processes of growth 
and disturbance are reflected in the structural components of 
forest. Large footprint lidar has been used to estimate biomass 
in tropical and temperate forests, primarily through the 
correlation with field measured height, basal area, and plot 
biomass estimates. However, in tall-stature forests height loses 
much of its correlation with basal area, so the height-biomass 
curve becomes asymptotic and is associated with greater error 
at large biomass values. Use of lidar in such an analysis also 
does not include estimations of other stand level structural 
properties. 
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Method and Results

Figure 6. A plot of the spatial autocorrelation of 
95%ile height for a typical 150km segment of a 
GLAS line (1000 waveforms at 150m sampling 
interval). This result indicates reasonable spatial 
coherence at kilometer-scales and beyond. 
Given the typical separation of GLAS lines in our 
study area (<5 km), this suggests good viability 
of kriging estimates, which will form a basis of a 
full "kriging with covariates" analysis that will 
incorporate relationships with MODIS data.

We used full lidar waveforms from ICESat GLAS to estimate forest stand 
structure. We developed a 3D canopy model that uses trunk or crown 
diameter distributions and allometric equations of associated crown depth 
and canopy height to generate a synthetic canopy. Using geometric series of 
tree size distributions, we generated thousands of synthetic vegetation 
profiles. These synthesized forest canopy profiles were rapidly and efficiently 
compared with lidar waveforms and matches identified using least squared 
difference. 

Figure 3. Synthetic 
profiles (derived from 
field data (dbh) and 
allometric equations 
using ellipsoids to 
generate canopy 
structure) compared 
with GLAS lidar
waveforms plotted as 
relative density. 

Figure 5.  Generated q-values plotted across 
the landscape.   The red marks high q-values 
indicating secondary vegetation or no 
vegetation.  These GLAS footprint paths cross 
the Amazon River floodplain in the image on 
the right.  Dark green is forest vegetation.

Figure 2. Example of crowns developed using a crown detection algorithm and allometric equations.  
Location of each crown in three-dimensions is used to calculate the canopy profile.  Canopy height is 
presented for each square meter for a 100 by 100 meter plot.  Synthetic canopy profiles generated 
using a crown edge detection algorithm (Palace et al. 2008) and an allometric relationship between 
crown width and both tree height and height to the bottom of the canopy.  Ellipsoids were generated in 
three-dimensional space and plots of 50 m2 were used to estimate frequency of crown location in a 
vertical profile.  Each color on the graph represents a randomly selected plot within the study area.

Geometric Series in Forest Stands and 
Generation of Synthetic Forests and 
Canopies

Forests that are believed to be at or near a 
steady state are often modeled using a “q ratio”
approach, in which the ratio between the 
number of trees in successive diameter classes 
is roughly constant (Meyer and Stevenson 
1943).  The first formal expression of the q ratio 
was made by the French forester de Liocourt
(1898), who used the term to describe the 
"quotient of dimunition" or rate of change 
between numbers of trees in successive 
diameter classes, i.e.

q=Nj/Nj+1

where Nj is the number of trees in the jth diameter class.  Later authors emphasized the 
prevalence of a constant q, which gives rise to an exponential diameter distribution (Meyer 
1943, Keller et al. 2001).  Although iterative techniques are often used to calculate the number 
of trees in different diameter classes, exact algorithms to generate the number of trees, basal 
area, and biomass for different diameter classes have recently been developed (Ducey and 
Gove, in press).

Figure 1.  An example of the geometric series between 
DBH size classes in a forest from four 100 ha plots in 
Tapajos National Forest, Para, Brazil (Keller et al. 2001). 
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The approach offered here uses a novel technique of simulating forest 
canopies to more accurately extract information about the complex structure 
of tropical forests from GLAS Lidar data that can be missed in simple height to 
biomass relationships. Preliminary results in Amazonia indicate that detailed 
tropical forest structural information can be estimated from GLAS using our 
3D model. 
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