Estimation of Tropical Forest Structure Using the Full Waveform Lidar from ICESat

M W Palace¹, S Hagen², B H Braswell³, M O Hunter¹, M Ducey⁴, M Keller⁵

¹Complex System Research Center, UNH, Morse Hall, 8 College Road, Durham, NH 03824
²Applied GeoSolutions, LLC, 87 Packers Falls Road, Durham, NH 03824
³Atmospheric and Environmental Research, Inc., 131 Hartwell Avenue, Lexington, MA 02421
⁴Department of Natural Resources, UNH, Rudman Hall, 46 College Road, Durham, NH 03824
⁵NEON, 5340 Airport Boulevard, Boulder, CO 80301
Contact: michael.palace@unh.edu

Introduction

The Amazon basin contains the world’s largest continuous tropical forest constituting 40% of the remaining area for this ecosystem and is made up of heterogeneous canopies and forest communities with unique assemblages of tree species, complex vegetation dynamics and history, and high biodiversity. Forest structural components include canopy geometry and tree architecture, size distributions of trees, and are closely linked with ecosystem functioning. The dynamic processes of growth and disturbance are reflected in the structural components of forest. Large footprint lidar has been used to estimate biomass in tropical and temperate forests, primarily through the correlation with field measured height, basal area, and plot biomass estimates. However, in tall stature forests height loses much of its correlation with basal area, so the height-biomass curve becomes asymptotic and is associated with greater error at large biomass values. Use of lidar in such an analysis also does not include estimations of other stand level structural properties.

Background

Geometric Series in Forest Stands and Generation of Synthetic Forests and Canopies

Forests that are believed to be at or near a steady state are often modeled using a “q ratio” approach, in which the ratio between the number of trees in successive diameter classes is roughly constant (Meyer and Stevenson 1943). The first formal expression of the q ratio was made by the French forester de Liocourt (1888), who used the term to describe the “quotient of diminution” or rate of change between numbers of trees in successive diameter classes, i.e.,

\[q = \frac{N_{j+1}}{N_j} \]

where \(N_j \) is the number of trees in the \(j \)th diameter class. Later authors emphasized the prevalence of a constant \(q \) which gives rise to an exponential diameter distribution (Meyer 1943, Keller et al. 2001). Although iterative techniques are often used to calculate the number of trees in different diameter classes, exact algorithms to generate the number of trees, basal area, and biomass for different diameter classes have recently been developed (Ducey and Gove, in press).

Method and Results

We used full lidar waveforms from ICESat GLAS to estimate forest stand structure. We developed a 3D canopy model that uses trunk or crown diameter distributions and allometric equations of associated crown depth and canopy height to generate a synthetic canopy. Using geometric series of tree size distributions, we generated thousands of synthetic vegetation profiles. These synthesized forest canopy profiles were rapidly and efficiently compared with lidar waveforms and matches identified using least squared difference.

Summary and Future Work

The approach offered here uses a novel technique of simulating forest canopies to more accurately extract information about the complex structure of tropical forests from GLAS Lidar data that can be missed in simple height to biomass relationships. Preliminary results in Amazonia indicate that detailed tropical forest structural information can be estimated from GLAS using our 3D model.