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Introduction
Inverse models predict fluxes that are quantitatively consistent with 
atmospheric measurements, but atmospheric mixing coupled with the 
sparseness of observations leave the problem ill-posed and frequently 
under-constrained. Depending on the scale of estimation, multiple sets of 
surface flux estimates may be consistent with a single record of observed CO2 
concentrations. To address this, the surface flux distributions of net ecosystem 
exchange (NEE) from four different biospheric models are used to evaluate the 
ability of the North American (NA) atmospheric CO2 sampling network to detect 
grid-scale (i.e., 1° x 1°) and regional spatial variability in land-atmospheric 
carbon flux.

The questions to the left 
are addressed using four 
(4) case studies. These 
case studies involve 
manipulating the surface 
flux distribution from the 
models in such a way as to 
isolate the influence of 
sub-ecosystem-scale 
variability, ecosystem-scale 
variability, and the 
near-field of observation 
locations on CO2 
concentration. 
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Tall/Marine Boundary Layer Towers Short Towers

Shaded regions on time series 
plots represent the estimated 
model-data mismatch at each 
tower, as a result of transport 
error.

Tower Location 

Average Sensitivity of July 2004 CO2 Measurements to Surface Flux 
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 Atmospheric CO2 Signal for Case 1

The resulting weekly-averaged CO2 concentration time series are 
compared to determine if changes in the spatial distribution and degree of 
grid-scale variability in surface fluxes translate into detectable differences 
in their corresponding atmospheric CO2 signal.
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Model: CASA GFEDv2

Model: SIB Model: ORCHIDEE

Model: VEGAS2

Park Falls, Wisconsin (WLEF)

Moody, Texas (WKT)

Harvard Forest, 
Massachusetts (HF)

Norman, Oklahoma (ARM)

Barrow, Alaska (BRW)

The 3-hourly, 1° x 1° surface flux distribution predicted from SiB3.0 
(Sellers et al. 1986; Baker et al. 2008), CASA GFEDv2 (Potter et al. 1993; 
Randerson et al. 1997; van der Werf et al. 2006), ORCHIDEE (Krinner et 
al. 2005), and VEGAS2 (Zeng et al. 2008) are used in conjunction with 
the WRF-STILT atmospheric transport model (Skamarock et al., 2005; Lin 
et al. 2003) to generate an atmospheric signal at continuous observation 
locations operating in 2004. Monthly VEGAS2 and CASA GFEDv2 fluxes 
were down-scaled to 3-hourly using the methods of Olsen and Randerson 
(2004). Pseudo-atmospheric concentrations were generated for all 24 
hours at tall (>= ~ 400 m) and marine boundary layer towers, and for 
the afternoon only at shorter towers (<= ~100m).

Variability in Surface Flux Distribution

Much of the variability in surface flux across models is located in the 
agricultural regions of the Great Plains and Midwest.     
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Significance Testing
Two-sample, two-tailed z-tests using 
tower-specific model-data mismatch error 
derived from real data and estimated 
using Restricted Maximum Likelihood 
(RML) (Gourdji et al. In Review), is used to 
assess the significance of observed 
differences among CO2 time series. The 
p-value for cases 1 through 3 and each 
model combination are shown below. The 
lower the p-value, the greater the 
significance of the difference between 
resultant CO2 signals. If no significant 
differences are observed, then inverse 
modeling approaches may be unable to 
infer a unique surface flux distribution at 
the grid-scale (i.e., 1° x 1°) or even at 
coarser resolutions, given the current 
sampling network.
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Case 1 (Transport Fluxes As-Given)
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Case 3 (Normalized Net Ecoregion Scale Flux)Case 2 (Sub-Ecoregion Scale Variability Removed)

At most towers, and during most times of the year, 
there is a significant difference in transported CO2 
signal among the originating surface flux distributions. 
These differences could be due to either the individual 
or combined effect of surface flux magnitude and 
distribution.

The difference between resultant CO2 signals among 
models becomes much less significant when the 
influence of sub-ecosystem scale variability in surface 
flux is isolated. 

Much of the differences observed in Case 1 appear to be a 
result of large, ecosystem scale variability in flux 
magnitude. Or rather, the impact of differences in the net 
magnitude of flux from each model rather than the 
distribution of surface fluxes within ecoregions.

Conclusions
In general, distinct atmospheric CO2 signals resulting from the 
different biospheric models appear to be attributable to large scale 
variability in flux magnitude, rather than differences in sub-ecosystem 
flux distributions. Towers with larger measurement footprints, and 
those located in more dynamic flux regions, however, do appear to be 
sensitive to sub-ecosystem-scale variability both in the near and far 
field.  Highlighting those regions where variation in flux distribution do 
not translate into significant differences in atmospheric CO2 signals 
provides information about the uniqueness of flux estimations from 
inversions. Such information will help inform inverse modeling, and 
improve our understanding of land-atmosphere carbon exchange.
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Candle Lake, 
Saskatchewan(CDL)

Q1: Can the 2004 
atmospheric network 

detect differences 
between fluxes from 
different biospheric

models?
CASE 1

Q3: Can the 2004 
network detect 
differences in 

sub-ecosystem-
scale variability? 

CASE 3

yes

no

2004 atmospheric 
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used to evaluate or 
infer flux variability 

across NA

Q4: Can the 2004 network 
detect differences in sub-

ecosystem-scale variability 
beyond the near field of 
observation locations?

CASE 4
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Q2: Can the network 
detect ecosystem-scale 

differences in flux?
CASE 2

yes

yes

no

2004 atmospheric 
network can be used 
to evaluate and infer 
sub-ecosystem-scale 
flux variability only 
in the near-field of 

observation 
locations

no

2004 atmospheric 
network cannot be 
used to evaluate or 

infer flux variability at 
sub-ecosystem-scales

2004 atmospheric 
network can be used to 
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scale flux variability across 

a portion of NA

no

Case Description Information Gained

1 Transport unique surface flux distributions 
from forward models to tower locations

Influence of surface flux 
magnitude and 
distribution on CO2
concentration.

2

Apply a model-specific mean to all cells within 
a given ecosystem. Thus, there is a different 
flux magnitude by biome among models, 
however no sub-ecosystem-scale variability

Influence of ecosystem-
scale differences in 
surface flux on CO2
concentration.

3

Normalize surface flux distribution by biome. 
Thus, across models, there is the same net 
monthly flux by ecosystem. However, the 
distribution of fluxes within each biome is still 
unique to each model.

Influence of sub-
ecosystem-scale, surface 
flux variability on CO2
concentration.

4

If sub-ecosystem scale variability is detected in 
the atmospheric CO2: apply an across-model 
mean to the near field of observation locations 
and preserve far field sub-ecosystem-scale 
variability

Influence of sub-
ecosystem-scale 
variability beyond the 
near field of observation 
locations.

Tower Name Location Height (m)
AMT Argyle, Maine 107
ARM Norman, Oklahoma 60
BRW Barrow, Alaska 10
CDL Candle Lake, Saskatchewan 30
FRD Fraserdale, Ontario 40
HF Petersham, Massachusetts 30
LEF Park Falls, Wisconsin 396
SBL Sable Island, Nova Scotia 25

WKT Moody, Texas 457
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