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1. Objectives

Characterize land ecosystem model greenhouse gas (GHG, e.g.,
CH,+CO,+N,0) flux sensitivity to seasonal inundation area and

duration 1n diverse ecological zones

Characterize future SMAP (Soil Moisture Active Passive Mission)
inundation extent and duration measurement abilities

Assess potential SMAP mission impact in daily GHG flux
modeling when used in place of static wetland databases and

modeled soil moisture status

Develop and test an SMAP-ecosystem model fusion system

2. Key Elements

Inundation mapping framework with SMAP data downscaling —

Sensor scene simulation with high-resolution data sources ~—
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Major processes: Aoxid: Atmospheric CH, oxidation; CH4pro: CH, production; CH4oxid: CH, Oxidation
during diffusion and ebullition transport; CH4oxidp: CH4 oxidation during plant-mediated transport (Occur in
herbaceous wetland only); Dif: CHy diffusion transport; Zhu: CH, ebullition transport; Pmt: Plant-mediated
transport of CHy; (Occur in herbaceous wetland only); Nitri: Nitrification; Denitri: Denitrification; DLEM
provides the environment factors and substrate for CH; and N>O modules; the environmental controls were

shown as dash lines.

Conceptual model of the CH, and N,O module, showing
production, consumption and transport. Both CH, and
N,O are closely linked to moisture, which could be input

to or simulated in DLEM.
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3. SMAP Overview
Launch expected Nov. 2014 — May 2015

Mission concept
— 40 km L-band (~1.4 GHz) microwave radiometer
— 1-3 km L-band synthetic aperture radar (SAR)

» Unique features: wide swath, high resolution, frequent
revisit (2-3 days)
— L-band measurements enable vegetation and clouds penetration
and deeper soil moisture sensitivity

Primary mission products (9-40 km resolution)
— Soil moisture
— Freeze/thaw detection
— Net ecosystem exchange (NEE)

Inundation mapping characteristics (ancillary product)
— Water detection or water fraction (f,) at 1-9 km resolution
— 2-3 day revisit interval
— Able to detect water beneath vegetation

4. Managing f  uncertainty

Expect SMAP f,, uncertainties to decrease with scale
— Radar signal-to-noise ratio decreases at smaller scales
f,, error model must also account for regional factors
— Heterogeneity of surface types (including water bodies)
— Vegetation types in dry and wet parts of scene
— Soil moisture and freeze/thaw status
— Topography

Choice of scale for the SMAP-DLEM interface depends on
DLEM robustness to f,, errors

— Highly robust:
o Interface at smaller SMAP scale
» Higher f,, errors managed by DLEM
— Less robust:
 Interface at larger effective scale (1.e., spatial noise filter)

« Apply time-series smoothing (i.e., temporal noise filter)

5. Plan

Phase 1 — Baseline simulation

SMAP scene simulation

— Low-resolution: N. America (primary) & S. America
(secondary)

— High-resolution: Selected intensive study regions at high-
latitude, mid-latitude & tropics

Develop and test baseline and alternative SMAP inundation
algorithms

— Predict retrieval performance stratified by ecosystem type etc.

Run North America DLEM simulations to test sensitivity to a
range of prescribed conditions (inundation and soil moisture)

Combine SMAP+DLEM sensitivity analyses for preliminary
assessment of potential SMAP data impacts on GHG model
fluxes

Phase 2 — Data-model fusion
Develop and test SMAP-DLEM interface

Simulate SMAP f, retrievals from analogous sensor data

Compare 1-year DLEM runs with and without f, inputs

Phase 3 — Synthesis and validation

Run WRF/STILT model to create emission footprint maps for a
representative sample of CH, atmospheric measurements

Convolve footprints with SMAP-DLEM modeled CH, fluxes

— Yields incremental CH, concentration at the measurement
point due to land surface processes in the emission footprint

Adjust for background CH, field and compare to measurements

3-way trial concept

Three-way trials combine simulations and real-world analogous
sensor data to more accurately quantify future sensor retrieval
performance:

. DLEM+SMAP simulation: Predicts future system
performance

. DLEM+AMSR-E simulation: Predicts performance of a
system analogous to SMAP

. DLEM+AMSR-E data: Analyzes real-world analog system
performance

» Directly validates the DLEM+AMSR-E simulation (2)

» Validates many aspects of the DLEM+SMAP simulation (1)
e.g., temporal sampling impact, downscaling impact,
SMAP-DLEM interface

6. Status

Expected project start June 1
SMAP status
— Preliminary Design Review: January, 2011
— Water fraction/detection algorithm being developed

Other developments

— ESA SMOS (Soil Moisture and Ocean Salinity) launch 1n
January

» Provides another SMAP sensor analog (L-band radiometer)
in addition to AMSR-E (6 — 89 GHz radiometers)

» Current static water bodies databases are unsatistactory

« RFI 1s apparently not an i1ssue in Americas
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