

John F. Galantowicz¹, Janusz Eluszkiewicz¹, Hanqin Tian² ¹Atmospheric and Environmental Research (AER), Inc., Lexington, Massachusetts – <u>johng@aer.com</u>

1. Objectives	
 Characterize land ecosystem model greenhouse gas (GHG, e.g., CH₄+CO₂+N₂O) flux sensitivity to seasonal inundation area and duration in diverse ecological zones 	
• Characterize future SMAP (Soil Moisture Active Passive Mission) inundation extent and duration measurement abilities	
 Assess potential SMAP mission impact in daily GHG flux modeling when used in place of static wetland databases and modeled soil moisture status 	
• Develop and test an SMAP-ecosystem model fusion system	
2. Key Elements	
• Inundation mapping framework with SMAP data downscaling	
Sensor scene simulation with high-resolution data sources	
Dynamic Land Ecosystem Model (DLEM)	
 Data-model fusion using observed CH₄ and WRF/STILT (Weather Research and Forecasting/Stochastic Time-Inverted Lagrangian Transport) model 	
	 1. Objectives Characterize land ecosystem model greenhouse gas (GHG, e.g., CH₄+CO₂+N₂O) flux sensitivity to seasonal inundation area and duration in diverse ecological zones Characterize future SMAP (Soil Moisture Active Passive Mission) inundation extent and duration measurement abilities Assess potential SMAP mission impact in daily GHG flux modeling when used in place of static wetland databases and modeled soil moisture status Develop and test an SMAP-ecosystem model fusion system Linundation mapping framework with SMAP data downscaling Sensor scene simulation with high-resolution data sources Dynamic Land Ecosystem Model (DLEM) Data-model fusion using observed CH₄ and WRF/STILT (Weather Research and Forecasting/Stochastic Time-Inverted Lagrangian Transport) model

Dynamic Land Ecosystem Model (DLEM)

Use of SMAP Seasonal Inundation and Soil Moisture Estimates in the Quantification of Biogenic Gas Fluxes

²*Auburn University, Auburn, Alabama*

3. **SMAP Overview**

- Launch expected Nov. 2014 May 2015
- Mission concept
 - 40 km L-band (~1.4 GHz) microwave radiometer
 - 1-3 km L-band synthetic aperture radar (SAR)
 - Unique features: wide swath, high resolution, frequent revisit (2-3 days)
 - L-band measurements enable vegetation and clouds penetration and deeper soil moisture sensitivity
- Primary mission products (9-40 km resolution)
 - Soil moisture
 - Freeze/thaw detection
 - Net ecosystem exchange (NEE)
- Inundation mapping characteristics (ancillary product)
 - Water detection or water fraction (f_w) at 1-9 km resolution
 - 2-3 day revisit interval
 - Able to detect water beneath vegetation

4. Managing f_w uncertainty

- Expect SMAP f_w uncertainties to decrease with scale
 - Radar signal-to-noise ratio decreases at smaller scales
- f_w error model must also account for regional factors
 - Heterogeneity of surface types (including water bodies)
 - Vegetation types in dry and wet parts of scene
 - Soil moisture and freeze/thaw status
 - Topography
- Choice of scale for the SMAP-DLEM interface depends on DLEM robustness to f_w errors
 - Highly robust:
 - Interface at smaller SMAP scale
 - Higher f_w errors managed by DLEM
 - Less robust:
 - Interface at larger effective scale (i.e., spatial noise filter)
 - Apply time-series smoothing (i.e., temporal noise filter)

5. Plan

Phase 1 – Baseline simulation

SMAP scene simulation

- Low-resolution: N. America (primary) & S. America (secondary)
- High-resolution: Selected intensive study regions at highlatitude, mid-latitude & tropics

Develop and test baseline and alternative SMAP inundation algorithms

– Predict retrieval performance stratified by ecosystem type etc.

Run North America DLEM simulations to test sensitivity to a range of prescribed conditions (inundation and soil moisture)

Combine SMAP+DLEM sensitivity analyses for preliminary assessment of potential SMAP data impacts on GHG model fluxes

Phase 2 – Data-model fusion

Develop and test SMAP-DLEM interface Simulate SMAP f_w retrievals from analogous sensor data Compare 1-year DLEM runs with and without f_w inputs

Phase 3 – Synthesis and validation

Run WRF/STILT model to create emission footprint maps for a representative sample of CH₄ atmospheric measurements

- Convolve footprints with SMAP-DLEM modeled CH₄ fluxes
- Yields incremental CH₄ concentration at the measurement point due to land surface processes in the emission footprint

Adjust for background CH₄ field and compare to measurements

performance:

- - Provides another SMAP sensor analog (L-band radiometer) in addition to AMSR-E (6 – 89 GHz radiometers)
 - Current static water bodies databases are unsatisfactory

3-way trial concept

- Three-way trials combine simulations and real-world analogous sensor data to more accurately quantify future sensor retrieval
 - DLEM+SMAP simulation: Predicts future system performance
 - DLEM+AMSR-E simulation: Predicts performance of a system analogous to SMAP
- 3. DLEM+AMSR-E data: Analyzes real-world analog system performance
 - Directly validates the DLEM+AMSR-E simulation (2)
 - Validates many aspects of the DLEM+SMAP simulation (1) e.g., temporal sampling impact, downscaling impact, SMAP-DLEM interface

Status 6.

- Expected project start June 1
- SMAP status
- Preliminary Design Review: January, 2011
- Water fraction/detection algorithm being developed
- Other developments
- ESA SMOS (Soil Moisture and Ocean Salinity) launch in January
 - RFI is apparently not an issue in Americas

Acknowledgment

This work is sponsored by the NASA Terrestrial Ecology Program.