

Pulsed Lidar for the ASCENDS Mission: Space Instrument Studies

James B. Abshire, Haris Riris, Xiaoli Sun, Mark A. Stephen,

Jeffrey Chen, Luis Ramos-Izquierdo

and the Goddard IDL Team

Presentation to:

NASA Terrestrial Ecology Meeting

La Jolla, CA

March 15, 2010

Contact: James.Abshire@gsfc.nasa.gov

Abshire - 1

ASCENDS Mission

Why lasers ?

- Measures at night & all times of day
- Constant nadir/zenith path
 - Illumination = observation path
 - Continuous "glint" measurements
 over oceans
- $\boldsymbol{\cdot}$ Measurements at high latitudes
- Small measurement footprint
- Measure through broken clouds
- Measure to cloud tops
- Very high spectral resolution and accuracy

Our approach

- 1 line 2 um band pulsed direct detection
- 1 line 2 um band CW heterodyne detection
- 1 line 1570 nm band synchronous direct detection
- 1 line 1570 nm band pulsed direct detection

Active Sensing of CO₂ Emissions over Nights, Days, and Seasons (ASCENDS)

Laser Sounder Approach for ASCENDS Mission

- 3 simultaneous laser measurements
- CO2 lower tropospheric column One line near 1572 nm
 O2 total column (pressure) Measured between 2 lines near

765 nm

3. Altimetry & atmospheric backscatter profile from CO2 signal Surface height and atmospheric scattering profile at 1572 nm

Measurements use:

- Pulsed EDFA lasers
- 8 KHZ pulse rates
- \cdot ~ 8 laser wavelengths/ gas line
- •Time gated Photon counting receiver

CO2 & O2 column measurements:

- Pulsed (time gated) signals :
 - Isolates full column signal from surface
 - Reduces noise from detector & solar background
- Target: ~ 1ppmV in ~100 km along track sample

Atmospheric Scattering is widespread & is quite complex Pulsed Lidar can measure to the surface through scattering

The vertical dimension: The Geoscience Laser Altimeter System – 2003 Aerosol and Cloud Laser Measurements from Space

J. Spinhirne/ NASA GSFC

Candidate CO2 Line, Sampling & Vertical Weighting Functions

Space: SNR & Relative Measurement Errors

(10 seconds observing time, 500* km orbit, 1.5m telescope)

CO2 column measurement

O2 column measurement

Ave optical power ~25-30W

- ~ 3 mJ/pulse energy (PMT detector) 6 mJ energy from 1530 nm amp, 50% doubling Ave optical power ~25-30 W
- * Same performance at 3 mJ/pulse with PMTs at 400 km orbit

Rel Measurement Errors scale as (laser pulse energy)-1 *(T) -1/2

Measurement Model used in Mission Performance Simulation (Randy Kawa)

\rightarrow Test sensitivity of inferred CO₂ distributions to varying mission and instrument design parameters.

Oxygen - Open path measurement of absorption lines near 765 nm (M. Stephen)

Oxygen A band: Calculated atmospheric transmission for 100 m path at STP

Peak optical power ~ 50 mW Attenuation for round trip was ~10⁶

NASA TE Meeting: Pulsed Lidar for ASCENDS Mission: Space Instrument Studies

Abshire - 9

Initial Space Instrument Study

- Sun synchronous orbit
 - Altitude 500 km
 - Sun-sync inclination, 1:30 pm crossing time
- Mission Risk Class B
 - 5 year mission life
 - 85% mission reliability
 - Mitigate single point failures with redundancy or high reliability parts
- Traditional S/C bus orbit and attitude knowledge sufficient for mission requirements (i.e., no on-instrument attitude processing required)

Initial Concept Layout for Lidar (telescope diameter = 1.5 m)

3-15-10

NASA TE Meeting: Pulsed Lidar for ASCENDS Mission: Space Instrument Studies

Abshire - 12

ESA ALADIN 1.5 m Receiver Telescope

NASA TE Meeting: Pulsed Lidar for ASCENDS Mission: Space Instrument Studies

CO₂ Receiver - Photon Counting Detectors

HV supply and PMT housing

Now: Hamamatsu H9170-75 PMT

-Detector used in airborne receiver

- Turn-key operation
- QE = 2-16% at 1570nm
- InP/InGaAs photocathode
- Photocathode: ~5 mm diameter
- Dark count rate ~200 KHz at -80 C (TEC cooled)
- PMT power consumption ~150mW

Under Development: Adapting HgCdTe Photon Counting Detectors

TO-8 PMT package with transmissive photocathode

The Infrared Detectors for the Wide Field Camera 3 on HST

ABSTRACT

We present the performance of the IR detectors developed for the WFC3 project. These are HgCdTe 1K×1K devices with cutoff wavelength at 1.7 μ m and 150K operating temperature. The two selected flight parts, FPA#64 (prime) and FPA#59 (spare) show quantum efficiency higher than 80% at λ =1.6 μ m and greater than 40% at λ >1.1 μ m, readout noise of ~25 e⁻ rms with double correlated sampling, and mean dark current of ~0.04 e/s/pix at 150K. We also report the results obtained at NASA GSFC/DCL on these and other similar devices in what concerns the QE long-term stability, intra-pixel response, and dark current variation following illumination or reset.

Present read-out configured for photon accumulation

3-15-10

NASA TE Meeting: Pulsed Lidar for ASCENDS Mission: Space Instrument Studies

- O2 Channel Detectors
- SCPM Detectors (8 each)
- ~70% QE (765 nm)

From Perkin Elmer

Now TRL=9

High TRL

- Successfully improved & up-screened commercial units for GLAS/ICESat
- Advantages: High Sensitivity

2nd study - Aft view of optical bench

2nd ASCENDS Lidar Study: Two candidate rockets (both have considerable excess lift capacity)

NASA TE Meeting: Pulsed Lidar for ASCENDS Mission: Space Instrument Studies

ASCENDS Lidar & 3 Spectrometers in a Falcon 9 Faring

- \bullet Conducted two studies of this approach for ASCENDS space lidar in 4/08 and 9/09
- Measures CO2 & O2 via pulsed direct detection from ~ 400 km, sun-sync 1:30 pm orbit
- Straightforward space lidar design:
 - Mass: \sim 420 Kg (can be reduced via more efficient layout)
 - Power: ~ 800 920W (3dB margin); driven by SNR needs, detector choice
 - Data rate: ~1.9 Mbit/sec Ok for use of high latitude comm. ground site
 - Size driven by receiver telescope diameter and radiators needed for lasers
- Low risk: use of space qualified telescope, O2 detectors, thermal system
- Primary power draw & thermal source: laser subassemblies
- Laser architecture -> high efficiency & reliability, switchable cold spares
- Detectors -> reliability via use of multiple detectors & switchable spares.
- Several aspects can be optimized in follow on studies