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1. Abstract 3. Remote Sensing of Aboveground Figure 2. Aboveground Plant Biomass at 5. Sensitivity Analysis of Remote Sensing Data with MEM
The NOAA National Estuarine Research Reserve System (NERRS) and Biomass Rush Ranch o |
surrounding communities need a verifiable, spatially explicit forecasting model of v O\ Y We testeo MEM_?"76 sensitivity to remotely sensed Table 3. Inputs for MEM analysis
tidal marsh response to sea level rise (SLR) to address the potential impacts of During summer 2014, within 48 Landsat pixels, we sampled inputs of peak_ biomass and e_mnual average SSC, ek
SLR on coastal ecosystems and dependent wildlife species. The Marsh Equilibrium biomass in 6 regularly distributed 0.1 m? sample plots to estimate compared to field measur_ed Inputs (Schile et al. 2014) Data Source hiomass
Model (MEM) is a one-dimensional mechanistic elevation-based soil cohort model average biomass per pixel. Biomass averages for Landsat pixels and to error associated Wlth_ rfe_motely Se_nsed data. mg/L) (g/m?)
that models marsh elevation change based on feedbacks between field-measured ranged from 0 to 1600 g/m?2. We built a multi-temporal dataset from Data were run for 0-300cm initial elevations (n=31 Eield 37 5400
organic (plant biomass) and inorganic (suspended sediment) inputs. Working at 6 Landsat 8 scenes and matched field data collected within 7 days elevations) at a single rate of SLR (100 cm by 2100). RS 30 2040
Rush Ranch, a San Francisco Bay NERR site, we tested the feasibility of obtaining of image data. The biomass model input to MEM is peak biomass. Response curves (trend surface analysis) were RS+RMSE 30 5366
two important MEM inputs, peak biomass and annual average suspended To assess the error in predicting biomass in high biomass plots, we generated for each model run. The elevation curve Biomass
sediment concentration (SSC), from Landsat 8-based maps of SSC and calculated RMSE for measured biomass values in the top 90t responses were compared using matched pair RS-RMSE 30 1714
aboveground biomass. We tested the sensitivity of MEM to remotely sensed inputs percentile of the biomass distribution (Byrd et al. 2014). analyses (DF: 1, 30) and significant diversion points Biomass
as compared to field measured inputs, and to error associated with the remote were identified at p<0.05, p<0.01 and p<0.001. Based RS+RMSE SSC 3338 2040
sensing inputs. We produced a biomass map of Rush Ranch that applied the Wide Biomass Model on these differences in linearity, boundaries (in cm) RS-RMSE SSC 2662 2040
Dynamic Range Vegetation Index (WDRVI) (pyr*0.2 — pr)/(Pryr*0.2+pg) to fully » Produced a rule-based model that applied the Wide Dynamic were determined to illustrate significant diversions from |
vegetated pixels and the simple ratio index (Prey/Pereen) tO Pixels with a mixed Range Vegetation Index (WDRVI) (pyr*0-2 — pr)/(Prir*0-2+0r) field-based inputs.
signal of vegetation and water. RMSE for top 90" percentile biomass values was (Mishra et al. 2012) to fully vegetated pixels and a simple ratio , _ _ L _
326 g/m?. We also produced a time series of SSC with a single band semi- Index (Pred/Pareen) 10 Pixels with a mixed signal of vegetation and Figure 4. \(egetatlon maps at 10_0 Figure 5. MEM sensitivity to remote sensing error
analytical model based on local mass specific absorbing and scattering properties water (Table 1). years.for field and remote sensing §ru| ferom §g. Herioem §o ., CHevaoom
(R%=0.66, RMSE = 3.38 mgL-1). Comparison of Landsat 8 and field-based MEM * Fraction vegetation cover (FVC) was calculated using a high- MEM inputs 1 NSy 1 ) SOUUUR % Ny
iInputs found no significant difference in projections across 95% of the marsh plain resolution vegetation map produced by the California Department ™ e ——r m 3
area at _100 years, with bot_h projections illustrating a subtl_e sinking _of the marsh. of FISh and Wlldllfg. | Table 1. Landsat 8 Biomass Models o g{f- i5 Flev20 cm Elev120cm Elev2200m
Integration of remote sensing data would transform MEM into a spatial model for * A biomass map (Figure 2) was produced according to the L 5 £ i i} Trrreessss 11s Trerererer
forecasting coastal marsh vegetation distributions to aid regional decision making. equation: Model RZ n RMSE =y ’ //;( 3 5
If FVC>0.90 then biomass = exp@97"WDRVI+757) and log(biomass) ~ WDRVI 0.56 38 217.4g/m? . O T
R — __ if 0.50<FVC<0.90 then biomass = expt>29f,_ /P .. T 1252/FVC m«-\w‘” | i e
%’%nglomqtiﬁ N | e F|gure 1. StUdy Area | . RMSE for the 90th percentile pIOtS (pIOtS >1100 g/mz) = 326 g/mz |Og(bi0mass*FVC) ~ pRed/pGreen 0.57 47 207.7 g/m2 Fielé\Data » | ) F ;(‘“fx §Ei Elev 60 cm %Ei Elev 160 cm %Eiz Elev 260 cm
FOVEP N SR e g A |  Rush Ranch, a San Francisco Bay . : _ 5 . f g TR | [ T —
TN s c | National Estuarine Research Reserve * Peak biomass in August 8 scene: 2040 g/m-. < i s ez 115 Trvereeait |1 reeeeieets
e T N - site, in Suisun Marsh, CA. We are € A ;| Gesm fyu] TG 1y,] U2
el ReRanen integrati t ing data with N ;
b W g SFBayNERR A o 0 cenees grating remote sensing data wi _ _ _ S - marsh it i ifc i serrreceee
4@“-: ...l the Marsh Equilibrium Model to 4. Remote Sensing of Suspended Sediment Concentration A A s B i i i
AL (e | produce regional forecasts of marsh | | | —___— = e B SSC+11%  —SSC-11%  —BM+16%  —BM-16%
¢ | emeed response to sea level rise, using the Figure 3. Time Series of Landsat 8 SSC (mg/L) |
o 3 égﬂj:g‘?;h NERR site as a reference marsh. e— S O IE—— Because the MEM input parameter is annual average suspended * RSinputs were 11-16% lower than field inputs (Table 3) so led to lower rates of accretion.
.'.,?;}5; e . 100, sediment concentration (SSC), we used twelve Landsat 8 scenes to * Model performance was insensitive (p>0.05) to differences across 95% of the marsh plain.
% generate a time series of SSC for Suisun Bay and neighboring tidal « At 100 years, projected elevations in this dominant marsh zone (180-200cm NAVD) were
9() channels. Images were converted to surface water reflectance less than 5cm different from field-sourced projections, with both projections illustrating a
according to Vanhellemont and Ruddick (2014) and Gordon and subtle “sinking” of the marsh platform to lower in the tidal frame (Figure 4).
Jém I” Wang (1994). Band 4 atmospherically corrected reflectance data was  From the marsh edge to upland (80-200cm), biomass variability had a larger influence than
October 9, 2013 October 25,2013 December 12, 2013 highly correlated with the in-water radiometric measurement of SSC variability, but SSC variability strongly altered mudflat responses (0-80cm; Figure 5).
reflectance (R? = 0.86, RMSE = 0.0007 sr1).

S0

2. Marsh Equilibrium Model | SSCModel | | | 6. Coastal Management Applications
MEM is a one-dimensional mechanistic elevation-based soil cohort model that * We calibrated a single band (band 5, 865nm) semi-analytical model
models marsh elevation change based on feedbacks between field-measured of ocean reflectance (Nechad et al. 2010) with 7 in situ SSC A spatial version of MEM would generate
' i i i i ' i December 28, 2013 January 13,2014 March 18,2014 © 50 samples collected on May 5 at the time of a Landsat 8 overpass. . .
(Z)B%aénlc (plant biomass) and inorganic (suspended sediment) inputs (Morris et al. - pb X i >t’f . e P robust, regional projections coastal marsh
) €a soC:p Ioh coe A'\(éeg or ste n:etn mt € study site was distributions. These projections would aid
e emybomasspratte ] | e | MEM 3.76 ! measured tsing an Al-9 sSpectfopholometet. habitat conservation planning for special-status
. Testable ¥ Biomass Seasonality o - SO e A « Mass specific absorption: 0.0104 m?g* at 865nm. wildlife species, and aid conservation planning
. Outputs mean sea level by | oo/ S VO « Mass specific scattering was determined by fitting the model to the for coastal ecosystem services, such as carbon ot | e end eal )
e 1o8] emavD . / |\ € s g 200 - - Soil carbon in coasta The endangered salt mars
year | wnseoo | o v | 400 /| : . | L R April 19, 2014 May 5, 2014 May 21, 2014 7 SSC-reflectance match-ups collected on May 5th. sequestr_a_tlon and protection of coastal wetlands. Photo: Steve harvest mouse
* Empirically-calibrated s T st ) | 5 0 e 0 S e 0w E T o » Mass specific scattering: 0.0125 m? g1 at 865nm communities. Crooks (Reithrodontomys raviventris).
« Uses hind-casting with soil B | et _ e : _ Photo: Isa Woo
cores to validate maxclevation [ 300 am | Taoo0 A A M= et , « We used the final model (Table 2) to generate a time series of SSC.
wm | 2z de WAV 0 70— g /. Acknowledgements
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