Marine Optical BuoY (MOBY)
Radiometric Uncertainty Budget for Ocean Color Satellite Sensor Vicarious Calibration
S. W. Brown¹, M. E. Feinholz², S. J. Flora², M. A. Yarbrough², T. Houlihan², D. Peters²,
E. Stengel¹, James L. Mueller¹, B. C. Johnson¹, and Dennis K. Clark²
¹NIST, Gaithersburg, MD; ²Moss Landing Marine Labs, Moss Landing, CA; ³NOAA NESDIS, Camp Springs, MD; ⁴Vaisala, CA; ⁵Marine Optical Consulting, Arnold, MD

MOBY calibration was a NOAA-NASA-NIST collaborative effort; Goal was 3% uncertainty (k=1) in water-leaving radiance

MOBY Measurements

| Down-welling irradiance & up-welling radiance | Is 3% uncertainty a realistic goal? | MOBY operates for extended periods in a difficult environment |

Current Lg Uncertainty Budget

| MODIS Terra Band [%] | MODIS Type A uncertainty in Lg(

Vicarious Calibration of SeaWiFS w. MOBY

Implications for the vicarious calibration of ocean color satellite sensors

Two logical potential sources for the discrepancy are sub-pixel variability in the water-leaving radiance and larger-than-expected Type A uncertainty in the atmospheric correction.

This work has been sponsored by NASA and NOAA/NESDIS.