Laser Sounder for Measurements of Atmospheric CO2 Concentrations - Overview

James B. Abshire
Haris Riris, Graham Allan*, Xiaoli Sun, S. Randy Kawa, Jianping Mao**, Mark Stephen, Emily Wilson, Michael Krainak

* - Sigma Space, Greenbelt MD
** - RSI Inc, Fairfax, VA

NASA Goddard Space Flight Center, Solar System Exploration Division
Greenbelt MD 20771

Presentation to:
NASA Carbon Cycle and Ecosystems Workshop
University of Maryland Conference Center, College Park MD
April 28, 2008

Supported by: NASA ESTO IIP, NASA GSFC IRAD
Contact: James.Abshire@gsfc.nasa.gov
An operational Space Lidar History
(LITE and SLA experiments not shown)

Apollo - Moon
NASA (1971-1972)
Ruby lasers, 5,000 shots

Clementine - Moon
LLNL/NRL (1994)
Nd:YAG laser, ~72,000 shots

SELENE/LALT - Moon
Japan (2007-present)
Nd:YAG laser,

Chang'E - Moon
China (2007-present)
Nd:YAG laser

LRO/LOLA - Moon
NASA GSFC (2008-2010)
Nd:YAG laser, >1 Billion shots (planned)

MGS/MOLA - Mars
Nd:YAG laser, 670 million shots

NEAR/NLR - Eros
JHU/APL (96-2001)
Nd:YAG laser, 11 million shots

MESSENGER/MLA - Mercury
NASA GSFC (2004-2012)
Nd:YAG laser, 12M shots (planned)

ICESat/GLAS - Earth
NASA GSFC (2003-present)
Nd:YAG laser, >1.7 billion shots to date

CALIOP/CALIPSO - Earth
NASA LaRC/ Ball Aerospace (2006-present)
Nd:YAG laser, > 1B shots to date

4/28/08
CO₂ Laser Sounder Overview - NASA Carbon Cycle Workshop
Laser Sounder for ASCENDS Mission

Why lasers?
- Measures at night & all times of day
- Constant nadir/zenith path
 - Illumination = observation path
 - Continuous “glint” measurements over oceans
- Measurements at high latitudes
- Small measurement footprint
- Measure through broken clouds
- Measure to cloud tops
- Very high spectral resolution and accuracy

Lidar approaches for CO2 column:
- Broadband laser - 1570 nm band - λ tuned receiver
- 1 line - 2 um band - pulsed - direct detection
- 1 line - 2 um band - CW heterodyne detection
- 1 line - 1570 nm band - synchronous direct detection
- 1 line - 1570 nm band - pulsed direct detection
3 simultaneous laser measurements

1. CO2 lower tropospheric column
 One line near 1572 nm
2. O2 total column
 Measured between 2 lines near 765 nm
3. Altimetry & atmospheric backscatter profile:
 Surface height and atmospheric scattering profile at ~ 1064 nm

Measurements use:
- Pulsed EDFA lasers
- KHZ pulse rates
- 6 laser wavelengths/gas line
- Time gated Photon counting receiver

CO2 & O2 column measurements:
- Pulsed (time gated) signals:
 - Isolates full column signal from surface
 - Reduces noise from detector & solar background
- Goal: ~ Monthly “grid”, 1 deg spatial resolution, ~1 ppmV

For more information - see Poster by Abshire et al.
CO₂ Band & Line Measurement Approach

1570 nm CO₂ Absorption Band from Space (HITRAN)

Extinction of lines vary with # of CO₂ molecules in column

CO₂ Band & Line Measurement Approach

Lasers Provide:
- Narrow measurement line widths (MHz)
- Tunable Stable frequencies (MHz)

Energy Measurement Resolution:
- Need ~ 1000:1 SNR for online energies (E₂, E₅)
- With similar errors for O₂ gas measurement, results in ~ 1 ppm error in CO₂ mixing ratio

CO₂ & O₂ spectroscopy - see Poster by J. Mao, et al.
Gas column retrievals from measurements

Accurate estimates of N depend on knowledge of:

- σ - line cross section
- "z" effective path length
- λ - laser wavelengths
- Pref: Transmitted laser power (λ)
- T_{sys}: System transmission (λ)
- E_r (high SNRs)

Some error sources:

- σ - temp effects in line cross section
- z - atmospheric scattering, topo height change
- System changes; small λ-dependences in:
 - E_{tr}, $\tau_{sys}(\lambda_{on})/\tau_{sys}(\lambda_{off})$
 - Noise (signal & background shot noise, detector noise) in detected echo signal

Goal:

- Maximize received SNR
- Minimize all other error sources

General form of DIAL equation for uniform horizontal path (Beer-Lambert Law):

$$\frac{E_r(\lambda_{on})}{E_r(\lambda_{off})} = \frac{E_{tr}(\lambda_{on})}{E_{tr}(\lambda_{off})} \frac{\tau_{sys}(\lambda_{on})}{\tau_{sys}(\lambda_{off})} \exp(-\sigma N_g z)$$

Estimated CO2 number density:

$$N_g = \frac{1}{\sigma z} \ln \left\{ \frac{E_r(\lambda_{off})}{E_r(\lambda_{on})} \frac{E_{tr}(\lambda_{on})}{E_{tr}(\lambda_{off})} \frac{\tau_{sys}(\lambda_{on})}{\tau_{sys}(\lambda_{off})} \right\}$$

SNR "Stability"
Atmospheric Scattering & measurement approach

Atmospheric Backscatter:

- Scattering structure is complex & variable
- Most nadir-zenith paths have some scattering above surface
- Many instances of thin cirrus clouds & aerosols
- Thin cirrus clouds can cause errors 8-14 ppm in non-pulsed systems
- Some thick clouds
- “Target Depth” with clouds ~15 km => leave ~133 usec in travel time

Atmospheric Profile measured by GLAS/ ICESat (from campaign L2a)

One orbit sample measured by GLAS 532 nm photon counting receiver (J. Spinhirne)
Cirrus clouds are quite prevalent
Cloud reflections shorten average optical path -> bias CW (non-gated) column estimates
Cirrus cloud scattering -> 8-14 ppm errors in non-range gated measurements
Errors led our team to use a pulsed (& range gated) approach
Range gating eliminates cloud scattering errors (except for ground fogs)
Laser transmitters (CO2 and O2): Diode Seed Lasers -> Fiber Amplifiers

Characteristics:
- Fiber architecture - permanently aligned
- Closed laser cavity - free from contamination
- Large investments from industry
- Components built to Telcordia standards
- Diode pump technology is very reliable (undersea fiber optic repeaters)
- Distributed thermal load
- Electrical efficiencies: 8-15%
- Ongoing work for use on satellites
- Wide availability of highly engineered parts
- Wavelength flexibility
CO2 - Breadboard Instrument (2006)

Test Range
(laser path highlighted)

Licor tube location

206 & 400 m
CO₂ measured over 206 & 405 m open paths
Comparison to samples from end point in-situ sensor

Earlier Summer Measurements: 206 m path (vegetation active)

- Breadboard measurements offset and scaled
- Show diurnal change in Co₂ near surface
- Agreement to 1: 500 in absorption over 1st 16 hrs
- Close to performance needed for space mission
- Improvements later improved reproducibility
CO2 Absorption Measurements from van over 2.2 km path near GSFC using PMT detector

Measurements - day to sunset
Laser < 0.4W peak power
Receiver PMT attenuated
CO2 Measurements at NOAA tower, Erie CO

CO2 Tower - Colorado (Erie): NOAA BAO Tower

- CO2 sampled with LICORs at 20, 200 and 300 meters.
- 1.3 km line of site for path measurements to tower.

18 hour time history of optical absorption in path vs CO2 concentration reading at tower

Comparison of measured CO2 line scan with HITRAN Prediction based on the Tower LICOR

CO2 measurement van
Mid-November 2007
Oxygen - Open path measurement of absorption lines near 765 nm (M. Stephen)

Peak optical power ~ 50 mW
Attenuation for round trip was ~10^6

Oxygen A band: Calculated atmospheric transmission for 100 m path at STP

More information:
Mark Stephen, et al. Poster #1
Moving to Space

Initial Space Mission Study showed space mission concept practical

Carbon Cycle Initiative, CO2/Lidar

System Overview

David Everett

To be updated in 2008 with improved estimates for measurement, orbit, and components

4/28/08

CO2 Laser Sounder Overview - NASA Carbon Cycle Workshop
Space: SNR & Relative Measurement Errors

(10 seconds observing time, 500 km orbit, 1.5m telescope)

CO2 column measurement

CO2 Sounder Performance Estimate from Space
- 1572 nm, 1.2 kHz laser pulse rate, 1 usec laser pulse width
- 10 second averaging time, JWST HgCdTe Detector

![Graph showing CO2 column measurement](image)

Rel Measurement Errors scale as (laser pulse energy)^{-1} \ast (T)^{-1/2}

4 EDFA's, 500W pk power

O2 column measurement

Oxygen Measurement Performance from Space
- 765 nm, 1.2 kHz laser pulse rate, 1 usec pulse width
- 10 sec averaging time, Si APD SPCM Detector

![Graph showing O2 column measurement](image)

8 EDFAs, 500W pk power, 50% doubling
Next steps: 1. Airborne demo - fall 2008
2. ASCENDS Precursor for ESTO IIP - start 10/08

CO₂ Laser Sounder for ASCENDS Mission – Technology development and airborne demonstrations

December 12, 2007

Submitted in response to NNM07ZD6001N-IIP

Summary:

We propose to advance measurement technology and reduce the risk and cost for the ASCENDS mission. The measurements from our targeted laser instrument for space will measure CO₂ column abundance and fluxes with a spatial resolution of ~100 km, and will meet or exceed the science needs as summarized in the mission description.

Our pulsed laser approach measures the energy of laser pulses reflected from the Earth’s surface. Laser transmitters for CO₂ and O₂ are rapidly turned on and off selected atmospheric CO₂ and O₂ absorption lines near 1572 nm and 765 nm. A laser at 1064 nm is used to measure surface height and aerosol backscatter profile. Time gating is used to isolate the echo pulse from the surface and to minimize errors from atmospheric scattering and solar background.

Our proposal leverages strong understanding and capabilities developed over the past 7 years with support from the ESTO ACT and IIP programs. This work addressed many aspects of the measurement, improved the technique and technologies, and successfully addressed a number of significant error sources. We have demonstrated both CO₂ and O₂ measurements in open path tests, and made precise measurements of CO₂ absorptions over many days. Our understanding of CO₂ fluxes is enhanced by co-investigators who conduct research on atmospheric CO₂.

We propose to advance the readiness of the instrument technologies. We will demonstrate these in an airborne precursor instrument for the ASCENDS mission, to use as a simulator for a space mission, as a test bed for improving components, and for airborne science campaigns. We will also optimize the calibration approaches and flux recovery and improve the fidelity of the space instrument definitions. Our proposed work will advance the technology TRL > 5, to allow an instrument baseline that can be developed for space mission in a ~5-year period.

Airborne Precursor for ASCENDS Mission:
Calibrated mixing ratio measurements

Why?

• Simulator for Space
• Test bed for evolving components
• Airborne science campaigns