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Methane fluxes from inland waters

Largest natural flux with largest portion from tropics

Floodplain systems (rivers, lakes, wetlands):
Main tropical aquatic habitat

Uncertainty:
Large seasonal inundation and habitat variations
Bubbling important flux
Physical processes with diel variability
Biogeochemical processes not well characterized



Approach

Field measurements of methane fluxes in all habitats and
seasons, organic carbon supply and related
environmental factors

Intensive measurements of physical processes related to
gas exchange and mixing

Modeling of hydrological, hydrodynamic and
biogeochemical processes

Remote sensing of inundation and habitat changes
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Vertical fluxes and gas exchange

Advection

> K

Coefficient of eddy diffusivity, K,, characterizes
turbulence. Flux = K, (dC/dz)

Gas transfer velocity, k, used to estimate gas fluxes.

Flux =k (C,, — C,)
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Wind-protected bay: Open water

Bubble flux 0.6 to 616 mg C m2d?




Wind-exposed lake: open water |




Flooded forest
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Janauaca open water
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Surface renewal model

Gas transfer coefficient can be expressed
through the surface renewal model as:

Keoo = C; (EV)V4 Sc1/2

Turbulence at the air-water interface

calculated as rate of dissipation of
turbulent kinetic energy (€)



Physical measurements

Surface meteorology: wind, humidity,
long and short wave radiation,
air temperature, rain intensity

Time-series: temperatures and dissolved
oxygen at multiple depths

Water velocities: ADCP and ADV

Turbulence: temperature-gradient
microstructure profiler

Methane and carbon dioxide fluxes




400"S




100

50

N (cph)
" 196.5 197 197.5 198 198.5 199 199.5
Days
Anavilhanas flooded forest. Time series of a) € computed from

the similarity scaling (blue) and 8; (black), b) k¢,, computed

from the surface renewal model using computed € and 6.
Maclntyre et al. 2019 GRL



Gas exchange coefficient (k) using revised
similarity scaling model of € matches temporal
pattern of k determined from microstructure
measurements of near-surface turbulence.

Gas exchange coefficients are two to four times
higher than calculated with commonly used wind-
based equations under low winds.

Diel variations in gas fluxes can be modeled well
with time-series of turbulence-based k and
dissolved gas concentrations.






Paspalum repens phenology

Resprouting, receding waters Senescent after flowering, high water
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Interannual variability in NPP of up to 50%

Silva et al. 2013 Global Change Biol.
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Habitats and inundation
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Hydrological modeling with THMB RS

Flooded area simulated and observed
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Next steps

Relate methane fluxes to organic carbon supply

Refine hydrodynamic and hydrological models
for floodplains

Combine physical models and biogeochemical
processes to methane fluxes






