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Large Scale Biosphere-Atmosphere
" Experiment in Amazonia (LBA)

* The Large-scale Biosphere—Atmosphere Experiment in Amazonia
(LBA) is a multinational, interdisciplinary research program led by
Brazil. NASA was an active co-sponsor of the first Phase of LBA.

* For Phase | of LBA, the driving scientific questions were,
1. How does Amazonia currently function as a regional entity?

2. How will changes in land use and climate affect the biological,
chemical and physical functions of Amazonia, including the
sustainability of development in the region and the influence of
Amazonia on global climate?



In the beginning ... scientific
themes at the outset of LBA

e Carbon cycling in old-growth forests
* Eddy covariance was still immature
* Very few long term forest inventory
studies, most oriented towards forestry

 Anthropogenic forest disturbance

 Clear-cut deforestation extent was already well-
quantified and its effects on surface-energy and water
budgets had been investigated by ABRACOS

* Other anthropogenic disturbances including logging,
understory fires, and fragmentation were poorly
understood

 Regional and global influence of Amazonia

* Potential effects of Amazon deforestation explored in
numerical models considering water and energy budget
influences. Carbon not yet modeled at the global scale.




Three key papers

Carbon Dioxide Uptake by an Undisturbed
Tropical Rain Forest in Southwest
Amazonia, 1992 to 1993

John Grace,* Jon Lloyd, John Mclntyre, Antonio C. Miranda,
Patrick Meir, Heloisa S. Miranda, Carlos Nobre, John Moncrieff,
Jon Massheder, Yadvinder Malhi, Ivan Wright, John Gash

Measurements of carbon dioxide flux over undisturbed tropical rain forest in Brazil for 55
days in the wet and dry seasons of 1992 to 1993 show that this ecosystem is a net
absorber of carbon dioxide. Photosynthetic gains of carbon dioxide exceeded respiratory
losses irrespective of the season. These gains cannot be attributed to measurement error,
nor to loss of carbon dioxide by drainage of cold air at night. A process-based model, fitted
to the data, enabled estimation of the carbon absorbed by the ecosystem over the year
as 8.5 = 2.0 moles per square meter per year.

Most of the world's tropical forest is ma-
ture and undisturbed, and little is known
about its carbon balance. Ecologists consid-
er that in an unvarying environment, un-
disturbed ecosystems are in a s(eady state
such that photosynthetic gains are bal

J. Grace, J. Mcintyrs, P. Merr, J. ieff, J.

by respiratory losses due to death and de-
composition. However, the terrestrial bio-
sphere may be undergoing fertilization as a
result of increasing concentrations of CO,
coupled with higher deposition rates of
nitrogen (1, 2). If this is the case, undis-
turbed tropical forest may be a large sink
of CO, b of its huge area (3), 10 X
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ment, University of Edinburgh, Edinburgh EH3 34U, UK.
J. Lloyd, Environmental Biology Group, Research
School of Institute of

Studies, Australian National University, Canberra ACT
2601, Austrafia.

A.C. Miranda and H. S. Mranca, Laboratorio de Ecolo-

Brazil.

C. Nobre, instituto National de Pesquisas Espacias—
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10'? m?. Now we report direct measure-
ments of CO, flux over tropical rain forest
in the Brazilian Amazon, to test the hy-
pothesis that virgin forest sequesters car-
bon from the atmosphere.

We measured fluxes of CO,, water va-
por, and ible heat over undisturbed for-
cst (4) at Reserva Jaru, Rondonia, Brazil
(10°04.84'S, 61°56.60'W), during the dry
and wet seasons (September 1992 and April
to June 1993, respectively). An eddy co-
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Acceleration of global warming
due to carbon-cycle feedbacks
ina coupled climate model

Potor M. Cox', Richard A. Betts*, Chwris 0. Jones, Stoven A. Spall*
& lan J. Totterdel

* Hadley Cantre, The Met Offie, Bracknell, Berkshire RG12 25Y, UK
1 Sowthamptan Oceanography Centre, Europaan Way, Southam pton: SO1437H,
UK

‘The continued increase in the atmospheric concentration of
carbon dioxide due to anl'hrcposmk emissions is predicted to
lead to significant changes in climate’. About half of the current
emissions are being absorbed by the ocean and by land
ecosystems’, but this absorption is sensitive to dimate™* as well
as to atmospheric carbon dioxide concentrations’, creating a
feedback loop. General circulaion models have
udndd the ﬁe«lﬂck bmem climate and the biosphere, using
and CO, i from
nmpkulbon-qde ‘models that do not indude dimate change®.
Here we present results from a fully coupled, three-dimensional
carbon-dimate modd. md.iulms th-l carbon-cyde feedbacks
could si the twenty-first
century. We find that under a huiu-u\uu.l scenario, the
terrestrial biosphere acts as an overall carbon sink until about
2050, but turns intoa source thereafter. By 2100, the ocean uptake
rateof 5GtCyr ' is balanced by the terrestrial carbon source, and
atmospheric CO, concentrations are 250 p.p.m.v. higher in our
fully coupled simulation than in uncoupled carbon modds’,
resulting in a global-mean warming of 5.5K, as compared to 4K
without the carbon-cycle feedback.

The general circulation model (GCM) that we used is based on
the third Hadley Centre coupled ocean-atmosphere modd,
HadCM3’, which we have coupled to an ocean carbon-cyde
model (HadOCC) and a dynamic global vegetation model (TRIF-
FID). 'The atmospheric physics and dynamics of our GCM are
identical to those used in HadCM3, but the additional computa-
tional expense of induding an interactive carbon cycle made it
necessary to reduce the ocean resolution to 2.5 x 3.75%, nc:essnm-
ing the use of flux adj in the ocean comp
act dimate drift. HadOCC accounts for the xmosphm-oa-m
exchange of CO,, and the transfer of CO, to depth through both the
solubility pump and the biological pump*. TRIFFID models the
state of the biasphere in terms of the soil carbon, and the structure
and coverage of five functional types of plant within each model
gridbax (broadleaf tree, needleleaf tree, Cs grass, Cy grass and
shrub). Further details on HadOCC and TRIFFID are given in

thods.

Thc coupled dimate/carbon-cycle model was brought t© cqui-
librium with a ‘pre-ind CO: cony of
290pp.m.v., starting from an observed landcover data set’. The
resulting state was stable, with negligible net land—atmosphere and
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Three key papers

Carbon balance of old growth forests
* Grace et al. (1995) Carbon dioxide uptake by an undisturbed tropical rain forest
in Southwest Amazonia, 1992 to 1993. Science 270: 778-780.

Forest degradation by logging and fire
* Nepstad et al. (1999) Large-scale impoverishment of Amazonian forests by
logging and fire. Nature 398: 505-508.

Regional influences of Amazonia and Earth system feedbacks
* Cox et al. (2000) Acceleration of global warming due to carbon-cycle feedbacks
in a coupled climate model. Nature 408: 184-187.
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Carbon cycling in old growth forests ...

Carbon Dioxide Uptake by an Undisturbed
Tropical Rain Forest in Southwest
Amazonia, 1992 to 1993

John Grace,” Jon Lloyd, John Mcintyre, Antonio C. Miranda,
Patrick Meir, Heloisa S. Miranda, Carlos Nobre, John Moncrieff,
Jon Massheder, Yadvinder Malhi, lvan Wright, John Gash

Measurements of carbon dioxide flux over undisturbed tropical rain forest in Brazil for 55
days in the wet and dry seasons of 1992 to 1993 show that this ecosystem is a net
absorber of carbon dioxide. Photosynthetic gains of carbon dioxide exceeded respiratory
losses irrespective of the season. These gains cannot be attributed to measurement error,
nor to loss of carbon dioxide by drainage of cold air at night. A process-based model, fitted
to the data, enabled estimation of the carbon absorbed by the ecosystem over the year
as 8.5 = 2.0 moles per square meter per year.

Most of the world's tropical forest is ma-
ture and undisturbed, and little is known
about its carbon balance. Ecologists consid-
er that in an unvarying environment, un-
disturbed ecosystems are in a steady state
such that photosynthetic gains are balanced

J.Grace, J. Mcintyre, P. Merr, J. Moncrieff, J. Massheder,
Y. Mak, Institute of Ecology and Resource Manage-
ment, University of Edinburgh, Edinburgh EH9 34U, UK.
J. Lloyd, Erwvironmental Biology Group, Research
School of Biological Sciences, Institute of Advanced
Studies, Australian National University, Canberra ACT
2601, Australia

A C. Miranda and H. S. Mranda, Laboratorio de Ecolo-
ga, Universidade de Brasiia, Brasila, Brazl

C. Nobre, instituto National de Pesquisas Espaciss—
CPTECH, Caixa Postal 001, 12.630-000 Cachoera
Paulista, S30 Paulo, Brazil.

I. Wright and J. Gash, Institute of Hydrology, Walingtord,
OX10 888, UK,

*To whom comespondence shouid be addressed.
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by respiratory losses due to death and de-
composition. However, the terrestrial bio-
sphere may be undergoing fertilization as a
result of increasing concentrations of CO,
coupled with higher deposition rates of
nitrogen (1, 2). If this is the case, undis-
turbed tropical forest may be a large sink
of CO, because of its huge area (3), 10 X
10'? m?. Now we report direct measure-
ments of CO, flux over tropical rain forest
in the Brazilian Amazon, to test the hy-
pothesis that virgin forest sequesters car-
bon from the atmosphere.

We measured fluxes of CO,, water va-
por, and sensible heat over undisturbed for-
est (4) at Reserva Jaru, Rondonia, Brazil
(10°04.84'S, 61°56.60'W), during the dry
and wet seasons (September 1992 and April
to June 1993, respectively). An eddy co-
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Challenge to dogma...

* “Grace et al. have now called into question the steady-state assumption
for undisturbed tropical forests. Determining whether or not tropical
forest ecosystems are indeed important global carbon sinks will require

an understanding of their historical and spatial complexity” [Keller et al.
1996]

* Scientific concerns
* Obviously, this was a study at a single site

* Interannual variability (study in 1992-1993 followed mid-1991 Pinatubo eruption)
* Recovery from the 1983 El Nifio or even older drought disturbance
* Anthropogenic disturbance at this riverine site



Methodological concerns ...

= i &"fl‘\; ‘ /’
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“If a tree falls in the forest....”

“Who would risk siting a 45 m
tower and $100,000 of delicate
instrumentation near a senescent
emergent?”

Keller et al. Science, 1996

Be careful what you ask for!




Forest inventory plots of the RAINFOR network also find

carbon uptake
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Fig. 1. Annual aboveground biomass change in Amazonian forests, 1975-96. Mean (solid circles),
95% confidence intervals (dotted line), and 5-year moving average (solid line) are shown.




Forest inventory plots of the RAINFOR network also
show carbon uptake ... Until they don’t
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Inevitably, an eddy covariance tower forest site also had
to lose carbon
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Carbon budgets from
atmospheric observations

* Sampling from aircraft profiles

* Fluxes estimated from
integrated mole fraction
differences compared to
coastal values divided by the
air-mass travel time from the
coast to the sampling site

Gatti et al. 2014
Total
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Carbon budgets from atmospheric sampling (revisited)
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Present and future observations include total column
CO, from space

Net flux Net flux e et flux

T v a

0.9 1 0.29 GtC -2 . 0.8+ 0.28GIC

f Increase in 2015
relative to 2011

Decrease in 2015
relative to 2011

Pl \?l_,le;piration Fire i
-0.9 1;;70.96 GtC 0.6+1.01 GtC 0.4+008 GitC

Liu et al. 2017




8000 i Chambers et al. unpublished
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What about that sink?

6000 |
5000 ¢

4000 -

3000 -

* We are moving toward a no analog
state for tropical forests! 1000
* Is there an old growth forest sink? o T S T T NS M., |

* What is the cause of that sink? Mean annual temperature (C)
* CO, fertilization?
e Recovery from disturbance?

* How will the old growth forest respond to changing climate conditions
(temperature, rainfall, VPD)?

* |f the old growth forest is a sink, how long can it remain so?
* That leads us to anthropogenic disturbance ...

2000 -

Mean annual precipitation (mm)

T




Anthropogenic forest disturbance (we did not call it
degradation in 1999)
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Large-scale impoverishment
of Amazonian forests

by logging and fire

Daniel C. Nopstad*/, Adalberto Verissimot, Ane Alencer!,
Garios Nobrer, Erlvelthon Limas, Peul Lafecwe-,
Ciristophar Fotier’, Pauio Mowsnho!,
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“Most of the world’s tropical forest is mature and
undisturbed and little is known about its carbon
balance.” [Grace et al. 1995]
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Logging

Semi-automated
interpretation of Landsat
data based on a spectral
mixing model

Logging 1999-2002
12,000 to 20,000 km? y'?

Similar magnitude to
deforestation at that time

Similar magnitude to
estimates based on sawmill
surveys

¢, Amazon

Brazilian™ -

1

I 1999-2000 Logging
B 2000-2001 Logging

I 2001-2002 Logging
- Federal Conservation Units

Indigenous Reserves

Asner et al. 2005




Understory fire
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Fire continues to be a major threat to Amazon
ecosystem integrity. In 2015 to 2016 over 40,000
km? of forest suffered fires exclusive of clear-cut
deforestation
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Degradation questions

* Where is degraded forest
located and what is its
extent?

 What is the rate of
degradation?

* |s degraded forest
recovering or continuing to
degrade? At what rates?

* How does degradation affect
forest energy, water, and
carbon budgets?

Legend

[ ] Feliz Natal
D Xingu
- Deforestation
- Fire

Logging
- Remaining forest

States fo Amazon Legal

Municipality of Feliz Natal, Mato Grosso, Brazil




Regional and global influences of Amazonia

Acceleration of global warming
due to carbon-cycle feedbacks
ina coupled climate model

Petor M Cox*, Richard A. Botts*, Chwis . Jones*, Steven A. Spall*
& lan J. Totterded |

* Hadley Cantre, The Met Office, Bradmdl Berkshire RG12 25Y, UK
1 Sorgham pton Oceanography Centre, Europain Way, Sorgham pton SO1437H.
UK

The inued i in the pheri
carbon dioxide due to lnﬂ\ropogmic emissions is prec
lead to significant changes in climate’. About half of the

* Importance of climate + carbon cycle feedbacks
 Amazon tipping point concept for the Earth System
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Here we present results from a fully coupled, three-dim
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the third Hadley Centre coupled ocean-atmosphere
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act dimate drift. HadOCC accounts for the atmaspher
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Methods.
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Birth of the Amazon Tipping Point

* “Amazon forest dieback” enters our vocabulary
e But, how do trees die? (Drought experiments)




Drought experiments
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* Mortality take years
* Large trees suffer greater mortality
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Big trees access deep water
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Response of evaporative demand related to
traits for tropical forest trees
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Transpiration is a key source of water to the atmosphere
at the end of the dry season

Dr season TranSition
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Wright et al. 2016




Transpiration is a key source of water to the atmosphere
especially in drought years

a Transpiration recycling ratio: 20% of rainfall b
L« 51% ¢ 49%
¢ = 6 ™
" X o ‘ “ éd¢ ¢ o
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Staal et al. 2018




Tipping point feedbacks (4)
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Regional and global influences questions

* Is there a tipping point?

* What is the tipping point?

* How is the tipping point modified by changing climate and CO,?
* How is the tipping point modified by forest degradation?



Summary questions:

 What is the rate of carbon uptake in old growth forests and what are
the limitations to that uptake?

* What are the rates of forest degradation and regeneration and what
are their landscape level controls?

* Is there an Amazon tipping point in the Earth system forced by
deforestation and forest degradation? What is it and what the main
controls?



Thanks to everyone who made LBA possible!
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