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Questions

Is leaf phenology important for explaining differences in photosynthesis
among different tropical forests across the Amazon? (example: intriguing
contrast between K67 and RJA)

What is the phenology of whole forest canopy structure?

Can we characterize and separate the “slow” (e.g. canopy structure and
photosynthetic capacity) and the “fast” (e.g. stomatal control) vegetation
changes that drive photosynthesis using different methods?
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Methods Measurements

-Eddy covariance flux
-Meteorology

-Solar Induced
Fluorescence (SIF)

-Soil moisture

| -Litter

-LAI (LiDAR) E
-Biometry (inventories) gt

-Phenocameras (all sites)



1. Can phenology explain the differences in
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seasonality (low amplitude at RJA)
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Days since the start of the dry season
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Days since the start of the dry season

1. Can phenology explain the differences in
GPP between K67 and RJA? i
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Days since the start of the dry season
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| GPP between K67 and RJA?
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1. Can phenology help us explain the
dlfferences in GPP between K67 and RJA?
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1. Can phenology explain the differences in
GPP between K67 and RJA?
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1. Can phenology explain the differences in
GPP between K67 and RJA?
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Future work RJA: See leaf/crown demography
using phenocams -Manaus, K34
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Crowns flushing new leaves in five wetter months Crowns flushing new leaves in five drier months

Seasonality of new leaf formation over a full year of normal climate seasonality (December 2012 - November
2013) at K34 micromet tower, Central Amazon, near Manaus, Brazil. Leaf flush is concentrated in the drier months,

June to October. Gongalves, N. et al. 2019




Questions

2. Whatis the phenology of whole forest canopy structure?




2. How does canopy structure seasonally

changes? Initial analysis showed leaf QUANTITY were not
30 | nearly as important in determining the seasonality
| of GPP.
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2. How does canopy structure seasonally

;s changes? Amazonia

Southern Amazonia:
Seasonal understory is correlated to the
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Central Amazon: upper canopy and
understory leaf area index (LAI) is a more
complicated pattern with opposing
variations.
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Tang, H. and Dubayah, R. 2017 (corrected 2019), Light-driven growth in Amazon evergreen forests explained by seasonal
variations of vertical canopy structure, PNAS



2. How does canopy structure seasonally
changes? K67
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Smith, M. et al.,2018. Seasonal and drought related changes in leaf area profiles with dependencies on height and light

environment in an Amazon forest. New Phytol.
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environment in an Amazon forest. New Phytol.



2. How does canopy structure seasonally

changes? K67
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Questions

3. Canwe characterize and separate the “slow” (e.g. canopy structure and
photosynthetic capacity) and the “fast” (e.g. stomatal control) vegetation
changes that drive photosynthesis using different methods?




(Parenthes;s) Methods SIF measuremens

QEpro 5um and later a 25um slit (3 plxels) ﬁtted Wlth a Iong pass ﬁlter (transmlts > 695 nm) and a grating H15
installed for light between 730 and 786 nm. Targeting the outgoing spectra at 760 nm -the oxygen absorption
band (02 A-band: 745-770nm and Fraun: 744-759nm).

FLAME-S-VIS-NIR-ES: 25 um slit, 350-1000 nm range.

Bifurcated fiber 100 m length: 600 nm (QEpro) and 200 nm (Flame) width. All credit to A. Kornfeld



What we are learning from observed SIF and
other spectral measurements
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What we are learning from observed SIF and
other spectral measurements

Previous leaf level studies (tobacco) suggest
that under high incoming radiation GPP tends
to saturate while SIF keeps increasing [van der
Tol et al., 2014].
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What we are learning from observed SIF and
other spectral measurements

GEP will be driven by environment and the long and
fast responses of vegetation.
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