Status and Results from ICESat-2

Amy Neuenschwander
Applied Research Laboratories
University of Texas at Austin

Thanks to Lori Magruder, Eric Guenther, and Mike Alonzo at UT Applied Research Laboratories

NASA Terrestrial Ecology Meeting
September 23, 2019
You’re Not Hungry
You’re Excited to Download ICESat-2 Data
ICESat-2 Successfully Launched on September 15, 2018 from Vandenberg AFB

ICESat-2 has a laser altimeter that collects ranging measurements globally

First release of data was made available May 28th, 2019
ICESat-2 Timeline

SATCHELITE

September 15, 2018: Launch
October 14, 2018: Began Science Mode Acquisition
June 26 – July 10, 2019: ICESat-2 in safe-hold due to potentiometer issue on the s/c bus
 (No Science Data collected during this time)
July 10 – July 25: Science mode resumes, but timing bias in pointing solution
July 26, 2019 - Now: Nominal Science mode acquisitions

DATA PRODUCTS

Release 001: October 14, 2018 – May 3, 2019 currently available on NSIDC
Release 002: October 14, 2018 – June 26, 2019 available on NSIDC ~late-October
Release 002: Post July 26, 2019 – plan to get to nominal processing cadence (~49 day latency)
ICESat-2 Science Objectives

Quantify polar ice-sheet contributions to current and recent sea-level change and the linkages to climate conditions

Quantify regional signatures of ice-sheet changes to assess mechanisms driving those changes and improve predictive ice sheet models; this includes quantifying the regional evolution of ice sheet change, such as how changes at outlet glacier termini propagate inward.

Estimate sea-ice thickness to examine ice/ocean/atmosphere exchanges of energy, mass and moisture;

Measure vegetation canopy height as a basis for estimating large-scale biomass and biomass change.
Payload

ATLAS – Advanced Topographic Laser Altimeter System developed at GSFC
- Measures time of flight of laser pulses
- Measures pointing direction
- Single-photon sensitive detection
- 6 beams, arranged in 3 pairs
- 10 kHz pulse-rep. rate
- 14 m footprint
- spaced 0.7m along-track
- 532nm wavelength

Implementation

Launch Date: September 15, 2018
Lifetime: 3 years, with consumables for 5+
Orbit: 454 km, non-sun-synch, 92° inclination
Repeat: 91 day exact repeat, ~30 day sub-cycle
Science Data: 1 TB/day
System Pointing: Control = 45 m (14.3 m, CBE)
Knowledge = 6.5 m (4.0 m, CBE)

Single laser pulse at 532nm split into 6 beams.
Single-photon sensitive detection.

~3 km spacing between pairs provides spatial coverage
~90 m pair spacing for slope determination (2° yaw)
high-energy beams (4x) for better performance over low-reflectivity targets.
What is Photon Counting Lidar?

The reflectance of the surface at 532 nm drives the number of returned photons detected by ICESat-2.

Land ("Vegetation and Ground") are not as bright of reflectors as snow or ice.

We are expecting to get a per shot average of about 1 photon from the ground and 1 photon from vegetation.

1 shot every 70 cm in the along-track direction.
Semi-arid Woodlands in Botswana

February 3, 2019 day acquisition of ICESat-2 over northern Botswana. Trees with heights < 5m are detected and labeled with ICESat-2.

A mixture of Mopane and Acacia trees dot the landscape in this region of Botswana.

Biomass from woodlands are typically estimated empirically from optical data (e.g. Landsat).

With ICESat-2, we can now calculate canopy heights for these landscapes – thus reducing uncertainty in global biomass estimates.
Deforestation from Logging as observed by ICESat-2

March 19, 2019 night acquisition of ICESat-2 over Brazil’s tropical forest

ATL03_20190319234325_12450208

Forest experiencing logging

Intact tropical forest

Along-track distance (km)
Boreal forest in Alberta Canada as observed by ICESat-2

Along-track distance (km)

Elevation (m)

ATL03_20190212052542_06990206_206

ATL03 Photons gt11

Raw data
Canopy
Canopy top
Ground
ICESat-2 Data Products

When are they available? Release 1 May 28, 2019; Rel 2 ~late October 2019

Where can you get them? NSIDC or through Earth Data Search

What’s the latency for final products? Approximately 49 days from acquisition

Along-track Products

• ATL03 – Along-track Geolocated Photons
• ATL06 – Along-track Land Ice Data Product
• ATL07 – Along-track Sea Ice Data Product
• ATL08 – Along-track Land/Vegetation Data Product
• ATL09 – Along-track Atmospheric Data Product
• ATL12 – Along-track Ocean Data Product
• ATL13 – Along-track Inland Water Data Product

User’s Guide for each data product is available from NSIDC

Algorithm Theoretical Basis Document is available for each data product at https://icesat-2.gsfc.nasa.gov
ATL08 Validation:

Results

Calculate statistics on 20 km intervals over granule

Median Residuals (MAE = 0.30 m, RMSE = 0.35 m, Mean Error = -0.26 m)
Best Fit Residuals (MAE = 0.36 m, RMSE = 0.43 m, Mean Error = -0.28 m)

Residuals (MAE = 3.62 m, RMSE = 3.99 m, Mean Error = 3.61 m)
ATL08 Validation:

Ground (231 km)

Median Residuals (MAE = 0.19 m, RMSE = 0.21 m, Mean Error = -0.15 m)
Best Fit Residuals (MAE = 0.21 m, RMSE = 0.24 m, Mean Error = -0.17 m)
50 m Binned Residuals (MAE = 0.21 m, RMSE = 0.24 m, Mean Error = -0.20 m)

Canopy (119 km)

Residuals (MAE = 3.11 m, RMSE = 3.40 m, Mean Error = 3.11 m)
50 m Binned Residuals (MAE = 1.45 m, RMSE = 2.22 m, Mean Error = 0.73 m)
ICESat-2 Python Tools
(PhoREALpy)
Photon Research Exploitation Analysis Library

Pho the Photon
ICESat-2 Python Tools (PhoREAL)

Components:

HDF5 Component Reader
ATL03 Reader
ATL08 Reader
ATL03/ATL08 Photon Class Matching
Geographic/Projected Coordinate Conversion Utilities
Rotate Data
Basic Plotting Functionality
Basic Javascript Plotting Functionality
Output as LAS
Output as ASCII/CSV
Time Convert (UTC to local time)
KML/KMZ generator for each track

Version 1 of PhoREALpy is posted to GitHUB as of Monday September 23, 2019
github.com/icesat-2UT/phoREAL.py

Jupyter notebook outlining all the modules will also be available on GitHUB

Requirements: python3 (and associated libraries)

Windows/Linux GUI python wrapper to run most of these basic tools
PhoREAL_Toolbox.exe (linux and Windows)

- ATL03 File:
- ATL08 File (Optional):
- Output Directory:
- Ground Track Numbers:
 - GT1R
 - GT1L
 - GT2R
 - GT2L
 - GT3R
 - GT3L
- Trim Info Options:
 - None
 - Auto
 - Manual
 - Latitude: Min: Max: Degrees
 - Time: Min: Max: Seconds
- Create .las File
- Create .kml File
- Create .csv File

Output .kml file
Output ATL03.csv file
Web-based Visualizer (PhoSHOW)

ATL03 Photons are color coded by their ATL08 classification.

Javascript Plotting Functionality
Key Takeaways

• ICESat-2 is a space-based, profiling lidar mission
 • Does not provide the same resolution as airborne lidar mapping data
 • Does provide global coverage

• Use of strong beams are recommended for vegetation studies

• Night acquisitions are better than day acquisitions
 • Less background noise

• Data quality should improve over time
 • Improved calibrations of the ranging data
 • Improved modeling of orbital variations
 • Improvements to software will continuously be made
 • Data will be reprocessed periodically (Release 002 available ~late October 2019)
Thank you

PhoREALpy github.com/icesat-2UT/phoREAL.py

Send comments/praise/love to
amyn@arlut.utexas.edu

Send issues/bugs/complaints to
phoreal@arlut.utexas.edu
LVIS flown during ABoVE summer campaign