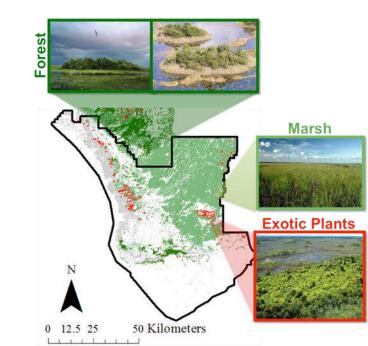
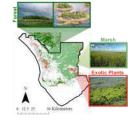
Optimizing Fire Regimes In Everglades Fire-Dependent Ecosystems

Dr. Sparkle L. Malone


Florida International University

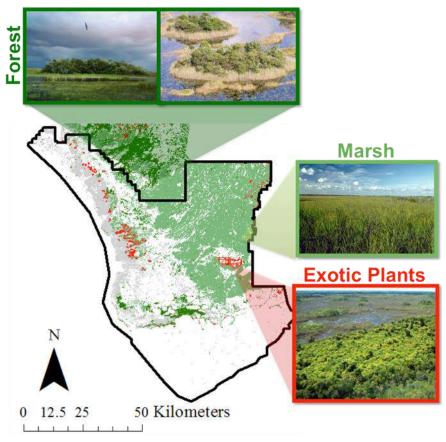

Fire is a driver of Ecosystem Change

Fire plays an important role in controlling the distribution and composition of communities in south Florida.

Florida's Fire Maintained Communities

• Fire is required for endemic plants, especially in pine rocklands.

• Within a few decades of fire exclusion, pinelands succeed to closed hardwood hammocks.

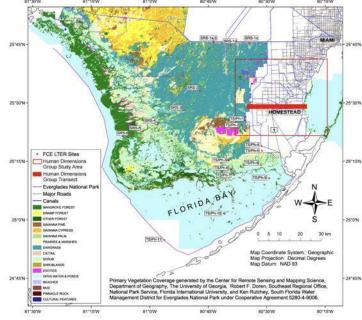

Fire is important in sawgrass dominated communities

Forest Marsh **Exotic Plants** 50 Kilometers

Fire reduces the buildup of dead biomass that shades living photosynthesizing material.

> Vegetation resprouts after fire rapidly returning to prefire composition and biomass.

Fire is a driver of ecosystem change


Flooding following fire can also lead to a change from sawgrass dominated to spikerush marsh

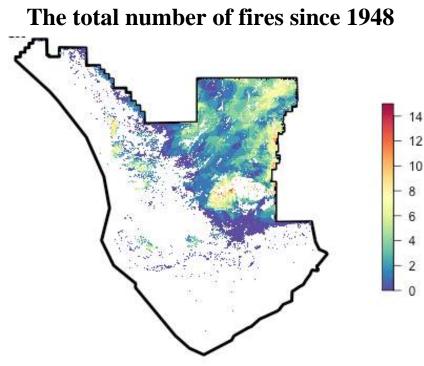
(Davis and Ogden 1994)

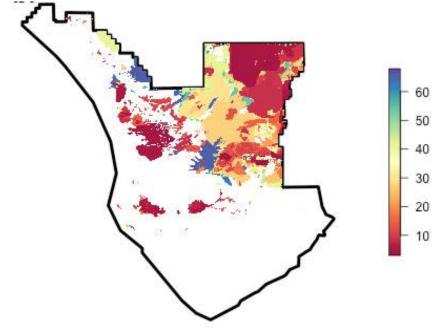
Determine the fire regime necessary to support the complex network of wetland ecosystems

Evaluate patterns in community composition, fire regime, and hydrology.

Recovery

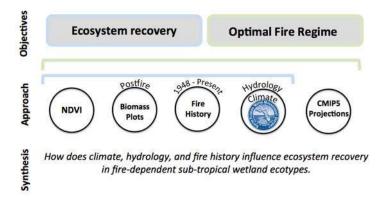
A key feature of ecosystem resilience to fire is the time required to return to a pre-fire state or level of function.


$$R_{ecotype} = Hydrology + Climate + Fire Regime$$

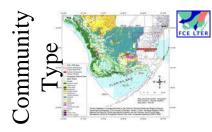

Everglades National Park

The fire records of Everglades National Park go back to 1948.

Number of years since the last fire


Rx + Wildfire

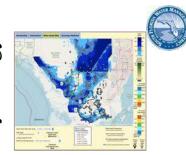
Determine how and why recovery rates vary and estimate how they are likely to change in the future.

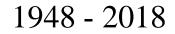

Objective 1: Estimate post-fire recovery time (years) for Everglades ecotypes and evaluate spatial and temporal drivers (climate, hydrology, fire history) of ecosystem recovery rates ($\Delta NDVI$).

Objective 2: Determine the optimal fire regime for Everglades fire-maintained ecosystems and evaluate how and why regimes are likely to change over time.

Year 1

Fire Regime

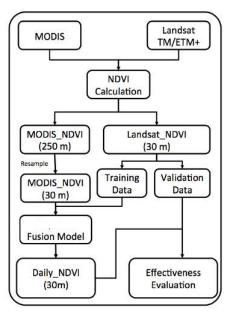



MODIS			tdsat ETM+)
[NOVI			
	Calculat			
MOOIS_NOVI (250 m)		andset_N (30 m)	IVI	
MODIS_NDVI	Traini		idation Data	1
(30 m) Bayesian			T	
Fusion Model		_	1	
Daily_NOVI (30m)	\square	Effectiv		

Hydrology

		YR 1			YR 2			YR 3			
Year		2018		2019				2020		2021	
Mont	h	May-	Sep -	Jan-	May-	Sep -	Jan-	an- May- Sep -		Jan-	
Obj	Study Element	Aug	Dec	Apr	Aug	Dec	Apr	Aug	Dec	Apr	
	Data pre-processing and layer development	•	•	•							
	Model development: post-fire recovery rates/ recovery time			•	•	•	•				
	Model development: optimal fire regimes						•	•	•		
1-2	Synthesis Reports and Workshops				•			•		•	

Year 2


NDVI-Fusion Model

X7		YR 1			YR 2			YR 3		
Year		2018 2019 2020			2021					
Month		May-	-		May-	-	Jan-	May-	-	Jan-
Obj	Study Element	Aug	Dec	Apr	Aug	Dec	Apr	Aug	Dec	Apr
	Data processing and layer development	•	•	•						
	Model development: post-fire recovery rates/ recovery time			•	•	•	•			
	Model development: optimal fire regimes						•	•	•	
1-2	Synthesis Reports and Workshops				•			•		•

Year 2: 30m daily NDVI

Random forest downscaling (RFD) Estimating daily NDVI (30 m resolution) using multivariate relationships with Landsat NDVI.

 $NDVI_{DAILY} = NDVI_{MODIS} + Water Depth + Community TYPE$

- Non-burned (> 5 years sawgrass): (Baseline)
- Burned areas: + Fire History

Root Mean Square Error (RMSE) and the Mean Absolute Error (MAE) between the dataset and Landsat NDVI.

Time to return to pre-fire NDVI

Recovery

$R_{ecotype} = Hydrology + Climate + Fire Regime$

- Observed Fire Effects (Landsat NDVI)
- Expected Fire Effects (NDVI _{DAILY})

Courses and Workshops

		YR 1		YR 2			YR 3			
Year		2018		2019			2020			2021
Mor	nth	May-	Sep -	Jan-	May-	Sep -	Jan-	an- May- Sep - Ja		Jan-
Obj	Study Element	Aug	Dec	Apr	Aug	Dec	Apr	Aug	Dec	Apr
	Data processing and layer development	•	•	•						
	Model development: post-fire recovery rates/ recovery time			•	•	•	•			
	Model development: optimal fire regimes						•	•	•	
1-2	Synthesis Reports and Workshops				•			•		•

- Disturbance Ecology (Spring 2019, 2020, 2021)
- Ecological Modeling Workshop Spring 2020
- Ecology (Fall 2018, 2019. 2020)

Development of New Research Lines

Tiany Hernandez

Questions

