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The Corn Belt & Upper Midwest: Key Component of the US Methane Budget

Major agricultural emissions Also: among most wetland-rich areas in US

GEPA enteric + manure emissions
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~35% of NA livestock CH, flux based on current inventories

WetCHARTS wetland emissions
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Region: ~30% of NA wetland CH, flux

But: uncertainties are large g7
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Large bottom-up vs. top-down discrepancies
[Zhang et al., 2014, Miller et al., 2014]
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GEM Study: Targeted Uncertainties

Wetlands. The largest North
American CH, source, but large

= divergence between estimates.

Rivers and Streams. Have shown
elevated CH, (and N,O)
emissions in agricultural regions,
but not well quantified into

bottom-up inventories.

Agriculture. Bottom-up inventories uncertain due to sparse

measurements, poor information on contribution from different
sources, complicated site-specific management factors.
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Scaling. Highly heterogeneous, discontinuous CH, sources,
scaling challenges. Can we reconcile bottom-up process
information with top-down constraints?




GEM: Multi-Scale Approach to Regional CH, Budget & Its National Context
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Process-Scale Ecosystem-Scale Regional-Scale Scaling Up, National
Quantifying river/stream —  Multi-year eddy flux — Aircraft and tall-tower — Context

and agricultural facility measurements over measurements, forward & Satellite data analysis,
emissions wetlands inverse modeling (GEOS- modeling

Chem)



Role of Rivers and Stream in CH, Budget

Science Questions: Lead: Ashish Singh

What is the role of streams & river CH, emissions in agricultural landscapes?
- Stream emissions found to double agricultural N,O budget for the region [Turner et al., 2015]

What are the underlying controls on this flux and its variability?
- N,O emissions scale with stream order; are there emergent relationships for CH, that can be used for scaling?

Approach: In-situ measurements through an agricultural watershed
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Role of Rivers and Stream in CH, Budget
Lead: Ashish Singh

Chamber observations for dissolved, headspace & flux Quantify flux & gas transfer velocities

Intensive measurements ™ measurements of CH,, CO, N0 —>| Characterize flux dependence on stream \L

Detailed ancillary observations properties

Derive scaling relationships,
assess regional budget
: Dissolved & air concentrations of CH,, CO,, N,O T

Extensive measurements >t = Characterize spatial distribution

Subset of ancillary observations

Ongoing ? N N e M g |
N,O 3 co, CH,
measurements! [JEETEEP I | w
(\"E 30 \\ 1 O'JE A % 60 . .
S \ 8l | F Spring
: o _, ,
g 20t ) 1 S5t | . E 40| I Summer
o | (o] | I“.r . |
= ol R | O 10} % [ . ' o 51 e M B
B TO-—ady—-B_ & H T B
o 1 2 3 . ? 8§ 9 0 — : : - : : e 0! T : L s P .
1 Slream Order A ! . . Str:am Osrder ° ! ® ° 0 L 2 = Str:am 05r - L 7 % 2
Initial results point to: Large, highly variable CH,, fluxes

No clear link to stream order (contrasts with N,O, CO,)

Seasonality differs from N,O, CO, [Singh et al., in prep]




Agricultural Emissions: Scaling Up
Leads: Xiang Li, Ashish Singh

Science Question:
How accurately do current bottom-up methods scale-up to quantify the importance of agricultural CH, emissions?

Approach:
Facility-level flux measurements to test bottom-up methodology.
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Method 1: Tracer-Release 0.4
38| [Lietal., in prep]
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Use CH,:tracer relationship to compute
facility-level flux, compare with bottom-up
prediction




Agricultural Emissions: Scaling Up

Method 2: Airborne quantification Leads: Xueying Yu, Ashish Singh
Example finding:
Airborne facility-level flux measurements for: Airborne + tracer release results
9 of largest CAFOs in region support bottom-up enteric flux
(dairies, beef, swine) estimates
>100,000 animals combined Large gap for manure emissions
Multiple re-visits across seasons o :
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Constraints on Wetland Fluxes From Edy Covariance Measurements

Y i e e s S , Lead: Julian Deventer
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Constraints on Wetland Fluxes From Eddy Covariance Measurements

Quantifying uncertainties in wetland CH, budgets
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[Deventer et al., 2019]

Lead: Julian Deventer

Large interannual variability in emissions

= Argues for strong climate sensitivity
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Constraints on Wetland Fluxes From Eddy Covariance Measurements

Example results: CH, flux dependence on interactions between T, hydrology, snow cover
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Tall Tower Measurements to Quantify Regional CH, Flux Through Time
Lead: Tim Griffis
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Ongoing: Apply 4+ year dataset
to quantify regional trends
through time
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Airborne Measurements Across Seasons to Derive Spatial Constraints
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Leads: Dylan Millet, Eric Kort, Xueying Yu

Measurements span summer, winter,
spring

Suite of trace gases: CH,, CO,, N,O,
CO, O0,, H,O0

Regional surveying for wetland,
agriculture, urban emissions, point
sources

Ongoing: inverse analysis of CH, and
N,O emissions




Multiple Inversion Frameworks to Quantify Midwest Methane Fluxes

GEM1 - Summer (2017 Aug.)

GEM?2 - Winter (2018 Jan.)
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GEPA livestock: 1.9 Tg/a

GEMS3 - Spring (2018 May-Jun.)

GEPA other emissions: 0.7 Tg/;
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Lead: Xueying Yu

1) High-resolution adjoint optimization (GEOS-Chem @ 0.25° x

0.3125°)

2) Sector-based analytical inversions for source attribution

3) Gaussian Mixture Model (GMM) to spatially cluster grid cells prior to
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10 15 20 CH,emis (10° kg a'km?)
Sector 4 094 1.03 1.01 1.02 1.01 1.00
Sector + BC 108 103 101 102 101 1.00 Example finding:
GMM 4 099 1.05 1.07 1.05 1.01 1.00 . . .
Bottom-up overestimate Ofsprlngtlme
4 093 1.02 1.03 1.03 1.00 1.00
GMM + BC wetland CH, flux
GMM—Adj 4 099 1.05 1.02 1.02 1.03 1.01
; .. . . . . Robust across inverse frameworks
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Exploit combined constraints from
GEM, ACT-America, ATom




Next Steps:

TROPOMI CH,
(annual mean)
-120

I
1800

1825

-100

B
1850 1875 1900 CHj [ppb]

Lead: Xueying Yu

1820 1830 1840 1850 1860 1870CH, [ppb]

Application of new TROPOMI CH, data
Retrieval evaluation

Assess consistency with constraints from GEM
datasets; place regional findings in broader context



