Closing the Methane Budget for the US Corn Belt & Upper Midwest: An Overview of the GEM Study

Dylan B. Millet¹, Timothy J. Griffis¹, John M. Baker¹, Stephen A. Conley², M. Julian Deventer¹, Alfredo DiCostanzo¹, Daven K. Henze³, Randall K. Kolka⁴, Eric A. Kort⁵, Xiang Li¹, Ashish Singh¹, Kelley C. Wells¹, Jeffrey D. Wood⁶, and Xueying Yu¹

¹University of Minnesota; ²Scientific Aviation; ³University of Colorado; ³University of Colorado; ⁴US Forest Service; ⁵University of Michigan; ⁶University of Missouri

2019 NASA Terrestrial Ecology Science Team Meeting

Funding: NASA IDS

The Corn Belt & Upper Midwest: Key Component of the US Methane Budget

Major agricultural emissions

700 million livestock

28 million cattle IA + MN: ~75% of national hog production ~35% of NA livestock CH₄ flux based on current inventories

*Region: ~30% of NA wetland CH*₄ *flux*

GEM Study: Targeted Uncertainties

<u>Wetlands.</u> The largest North American CH_4 source, but large divergence between estimates.

<u>Rivers and Streams.</u> Have shown elevated CH_4 (and N_2O) emissions in agricultural regions, but not well quantified into bottom-up inventories.

<u>Agriculture.</u> Bottom-up inventories uncertain due to sparse measurements, poor information on contribution from different sources, complicated site-specific management factors.

<u>Scaling.</u> Highly heterogeneous, discontinuous CH_4 sources, scaling challenges. Can we reconcile bottom-up process information with top-down constraints?

GEM: Multi-Scale Approach to Regional CH₄ Budget & Its National Context

Process-Scale Quantifying river/stream →

and agricultural facility emissions

Ecosystem-Scale

Multi-year eddy flux measurements over wetlands

<u>Regional-Scale</u>

 Aircraft and tall-tower measurements, forward & inverse modeling (GEOS-Chem)

Scaling Up, National

Context

Satellite data analysis, modeling

Role of Rivers and Stream in CH₄ Budget

Science Questions:

What is the role of streams & river CH_4 emissions in agricultural landscapes?

 \rightarrow Stream emissions found to double agricultural N₂O budget for the region [Turner et al., 2015]

What are the underlying controls on this flux and its variability?

 \rightarrow N₂O emissions scale with stream order; are there emergent relationships for CH₄ that can be used for scaling?

Lead: Ashish Singh

Role of Rivers and Stream in CH₄ Budget

Agricultural Emissions: Scaling Up

Leads: Xiang Li, Ashish Singh

Science Question:

How accurately do current bottom-up methods scale-up to quantify the importance of agricultural CH₄ emissions?

Approach:

Facility-level flux measurements to test bottom-up methodology.

Agricultural Emissions: Scaling Up

Method 2: Airborne quantification

Airborne facility-level flux measurements for:

9 of largest CAFOs in region (dairies, beef, swine) >100,000 animals combined

Multiple re-visits across seasons

[Yu et al., in review]

Leads: Xueying Yu, Ashish Singh

Example finding:

Airborne + tracer release results support bottom-up enteric flux estimates

Large gap for manure emissions

Top-down Bottom-up Enteric Manure

→ management factors affecting emissions that are not well-captured in inventories

Space-time distribution of ag emissions mis-represented Implications for source attribution, inverse modeling

Constraints on Wetland Fluxes From Eddy Covariance Measurements

Constraints on Wetland Fluxes From Eddy Covariance Measurements

Lead: Julian Deventer

Constraints on Wetland Fluxes From Eddy Covariance Measurements

Example results: CH₄ flux dependence on interactions between T, hydrology, snow cover

Ongoing - testing current emission models: Flux measurements versus WetCHARTs

Long-term flux data to evaluate modeled climate sensitivities for CH₄ emissions

WetCHARTs ensemble: comparable IAV to observations

Biased seasonality

[Deventer et al., 2019; Deventer et al. in prep]

Tall Tower Measurements to Quantify Regional CH₄ Flux Through Time

[Griffis et al. in prep]

Airborne Measurements Across Seasons to Derive Spatial Constraints

Leads: Dylan Millet, Eric Kort, Xueying Yu

Measurements span summer, winter, spring

Suite of trace gases: CH_4 , CO_2 , N_2O , CO, O_3 , H_2O

Regional surveying for wetland, agriculture, urban emissions, point sources

Ongoing: inverse analysis of CH_4 and N_2O emissions

N2132X

Multiple Inversion Frameworks to Quantify Midwest Methane Fluxes

Exploit combined constraints from GEM, ACT-America, ATom

	-	~						
Sector	- 0.94	1.03	1.01	1.02	1.01	1.00	0.83	1.00
Sector + BC	- 0.95	1.03	1.01	1.02	1.01	1.00	0.83	1.00
GMM	- 0.99	1.05	1.07	1.05	1.01	1.00	0.89	1.00
GMM + BC	- 0.93	1.02	1.03	1.03	1.00	1.00	0.77	1.00
GMM-Adj	- 0.99	1.05	1.02	1.02	1.03	1.01	0.92	1.01
GMM-Adj + BC	- 0.95	1.03	0.99	1.01	1.02	0.98	0.85	0.99
Adjoint	- 0.99	1.02	1.03	1.02	1.07	0.99	0.93	1.02
	Total	Oil &	Live	Waste	Rice	Fires	Wet	Other
	Ē	& Gas	Livestock	ste	Ū	Ň	Wetlands	er

High-resolution adjoint optimization (GEOS-Chem @ 0.25° × 0.3125°)

2) Sector-based analytical inversions for source attribution

3) Gaussian Mixture Model (GMM) to spatially cluster grid cells prior to optimization.

Example finding:

Bottom-up overestimate of springtime wetland CH₄ flux

Robust across inverse frameworks Consistent with GEM eddy flux measurements

Lead: Xueying Yu

Next Steps:

Lead: Xueying Yu