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Bernhard Wehrli, 2013 

Recent results indicate that aquatic fluxes 
subject to significant uncertainty:

• Land to Inland water: 1.7 - 5.7 PgC yr-1

• Inland water to atmosphere: 1.0 – 3.88 
PgC yr-1

• Inland water burial: 0.15 - 1.6 PgC yr-1

(Ciais et al., 2013, Tranvik et al., 2009, Wehrli, 2013, 
Aufdenkampe et al., 2011, Mendonça et al., 2017, 
Stallard, 1998, Bastviken et al., 2011, Cole et al., 2007, 
Raymond et al., 2013, Sawakuchi et al., 2017, Drake et 
al. 2018)

So-called missing 
carbon sink
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Carbon budget of North American aquatic 
ecosystems
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USGCRP, 2018: Second State of the Carbon Cycle Report (SOCCR2): A Sustained Assessment Report [Cavallaro, N., G. 
Shrestha, R. Birdsey, M. A. Mayes, R. G. Najjar, S. C. Reed, P. Romero-Lankao, and Z. Zhu (eds.)]. U.S. Global Change 
Research Program, Washington, DC, USA, 878 pp., https://doi.org/10.7930/SOCCR2.2018.
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Watershed approach: the Soil and Water 
Assessment Tool (SWAT)

Nearly 4,000 peer reviewed 
journal articles
Key improvements for C cycling:

CENTURY and EPIC for soil 
organic matter and terrestrially-
derived C (Zhang et al. 2013, 
2018; Yang and Zhang et al. 
2016; Du et al. 2019)
QUAL2K and CE-QUAL-W2 
riverine carbon processes (Du et 
al. 2019; Qi et al. 2019)
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Study region: Tuckahoe Watershed (TW) in lower 
Chesapeake Bay region

Part of USDA LTAR and CEAP
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Field scale model evaluation

Qi et al. (2018) 
Qi et al. (2018) 

Qi et al. (2019) Qi et al. (2018) 

In addition, surveyed crop yield (Lee et al. 2018) helped constrain model 
performance. 



Sun et al. (2017) , Lee et al. (2019)
Constrain ET and plant growth using 
Landsat and MODIS derived ET Lee et al. (2017), Huang et al. (2014)

Improving modeling of wetland 
inundation using Landsat derived 
inundation map. 

Hively et al. (2014), Yeo et al. (2014), Lee et al. (2016) Using 
remotely sensed cover crop images for water quality modeling

Wallace et al. 2018. Delineating flow paths 
using high-resolution LiDAR-derived DEM

Using remote sensing data to enhance model fidelity

Kim et al. (2019). Regional Estimates 
of soil moisture to further constrain 
regional hydrology processes. 
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Continuous measurements of POC and DOC at the 
outlets of Tuckahoe and Greensboro

Water quality monitoring include in-situ instrument 
packages containing full spectrum (200 to 700 nm) 
spectrophotometer probes (S-CAN Instruments, Vienna 
Austria) for in-situ monitoring of turbidity, nitrate, TOC, 
and DOC at 30-min intervals. Exemplary measurements 
of riverine hydrology & biogeochemistry parameters for 
a continuous period of 18 days are shown Above.



R2 = 0.80
Bias = 1.2%

R2 = 0.78
Bias = 31.7%

Model Evaluation for POC and DOC fluxes 
(Tuckahoe)



Riverine Processes

DIC
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Exemplary carbon pools, transformations, and fluxes at a reach 
scale.
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Complex riverine processes



Terrestrial SOC Stock
C Burial in 

River Networks
Terrestrially-derived C

POC, DOC, DIC

-8,840 Mg C 720,500 Mg C 690,400 Mg C

C discharged 
Downstream

+14,700 Mg C

C Burial
Terrestrially−derived C = 14,700 Mg C

720,500 Mg C =2%

C Burial
Terrestrially−derived C =155 Tg C

491 Tg C = 31.6%𝑆𝑆𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂

𝑇𝑇ℎ𝑖𝑖𝑖𝑖
𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠

227,678 Mg C

Carbon stocks across terrestrial and 
aquatic ecosystems

Weak source

Weak sink

Strong sink
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Terrestrial-aquatic carbon cycling relevant to 
human health
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Du, X., Zhang, X., Mukundan, R., Hoang, L. and Owens, 
E.M., 2019. Integrating terrestrial and aquatic processes 
toward watershed scale modeling of dissolved organic 
carbon fluxes. Environmental Pollution, 249, pp.125-135.

DOC modeling in NYC source watersheds



Balancing different carbon cycle impacts

www.hazenandsawyer.com/work/projects/nycdep-water-energy-nexus-study/

Filtration Plant: 
Upwards of $10 billion for construction + 

$200-400 million for operation and maintenance/year

Forest carbon sequestration benefits: 
$17.7 million/year

With a carbon price at $100/Ton CO2  
(Jeff McMahon 2019, Forbes)



• Coupled terrestrial-aquatic carbon cycling is not only 
relevant to carbon balance accounting, but also has 
direct impact on human health (e.g. drinking water 
safety).

• Uncertainties associated with terrestrial-aquatic carbon 
cycling are likely large, and need to be further 
constrained.

• Addressing the terrestrial-aquatic carbon cycling 
challenge requires more coordinated efforts across 
communities and disciplines.
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Conclusions



Thank you for your attention!
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