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over a factor of more than four, from 229GtCK21 (model F) to
2133GtCK21 (model A), with a C4MIP mean of 269GtCK21 and
standard deviation of 39GtCK21. This range is even larger if the
HadCM3 ensemble members are included. We therefore focus on
reducing the larger uncertainty, namely that in cLT.
Our inspiration for deriving a multi-model emergent constraint

comes from a recent study that showed a strong relationship between
the contemporary temperature sensitivity of seasonal snow cover and
the magnitude of the snow–albedo feedback, across more than 20
GCMs7. Because the seasonal cycle of snow cover can be estimated
from observations, this model-derived relationship converts the con-
temporary observations to a constraint on the size of the snow–albedo
feedback in the real climate system, for which there is no direct reliable
measurement. Emergent constraints of this type make use of the often
bewildering spread among Earth-system model projections to reduce
uncertainties in the sensitivities of the real Earth system to anthro-
pogenic forcing. They are distinct and complementary to bottom-up
constraints arising from process-based studies.
It made sense a priori to look for an emergent constraint linking the

sensitivity of tropical land carbon to interannual variability (IAV) in
the growth rate of atmospheric CO2. Tropical land carbon changes in
response to climate through changes in the net land–atmosphere CO2

flux into and out of this carbon store. Critically, the sensitivity of this
net tropical CO2 flux is revealed by the IAV in the CO2 growth rate,
because this is known to be dominated by the response of the tropical
land carbon cycle to climatic anomalies (Supplementary Fig. 1a) such
as the El Niño/Southern Oscillation8,24,25. Hence, some relationship
between the IAV in CO2 and the longer-term sensitivity of tropical
land carbon storage to climate change (cLT) is to be expected, as long as
processes that are not evident in the short-term variation of the CO2

fluxes (for example forest dynamics or changes in long-lived soil car-
bon pools) do not dominate the long-term response. This is our

working hypothesis to be tested against the C4MIP models, which
include a range of representations of slowvegetation and soil processes3.
Figure 2a compares the observed IAV in the growth rate of global

atmospheric CO2 (refs 26, 27) with the IAV in the annual mean trop-
ical temperature28. In both cases, we have chosen observational vari-
ables (global mean atmospheric CO2 and mean land-plus-ocean
temperature between 30uN and 30u S) for consistency with the vari-
ables available from the C4MIP models. Aside from the years imme-
diately after the volcanic eruptions24 of Mount Agung, El Chichon and
Mount Pinatubo, the IAV in the growth rate of atmospheric CO2 is
linearly correlated with the IAV in the tropical temperature (r5 0.65
(correlation coefficient),P, 0.0001; Fig. 2b), with a best-fit ‘IAVsensi-
tivity’ of 5.16 0.9GtC yr21 K21. Excluding these volcano-affected
years has an impact on the best-fit sensitivity of less than 5%, but avoids
the complication of diffuse-light fertilization of plant growth29, which
is not included in any of the C4MIP models. We also find a similar
sensitivity regardless of which tropical temperature reconstruction we
use. There is a greater sensitivity to the choice of the global atmospheric
CO2 data set, but this does not affect our overall conclusions (Sup-
plementary Table 1).
A similar calculation is made for each of the coupled climate–

carbon-cycle models, to derive the sensitivity of the CO2 growth rate
to tropical temperature for the period 1960–2010. Compared with the
observational data,models tend to overestimate the IAV in the tropical
temperature by a factor of up to two, and to overestimate the IAV in
the CO2 growth rate by a factor of up to three. The correlation between
these variables is underestimated in some models (F, B and D) and
overestimated in others (A, E and C). Hence, IAV sensitivity varies
across the C4MIP model ensemble, from 2.96 1.4GtC yr21 K21

(model F) to 9.76 0.7GtC yr21 K21 (model A), with most of this
range resulting from differences in the sensitivity of heterotrophic
respiration to climate (Supplementary Fig. 1b). The three HadCM3

Table 1 | Summary data for climate-carbon cycle projections
Model Change in global atmospheric CO2 (p.p.m.v.) Change in tropical land carbon (GtC) Change in tropical temperature (K)

Coupled Uncoupled Coupled Uncoupled

A HadCM3LC 689 477 211 354 3.93
B IPSL 453 381 177 365 2.70
C MPI 524 443 242 413 4.36
D CCSM1 483 465 319 364 1.53
E FRCGC 589 465 118 271 3.61
F LOOP 489 460 185 263 3.30
G HadCM3C-st 599 331 2148 317 4.41
H HadCM3C-a 445 333 26 168 3.76
I HadCM3C-h 589 246 2165 251 4.08

Changes in atmospheric CO2, tropical land carbon and tropical near-surface air temperature (30uN–30uS), as simulated by the nine climate–carbonGCMs analysed in this study. Models A to F are from theC4MIP
study3, whichprescribed theSRESA2CO2 emissions scenario. For thesemodels, the changes are calculated over theperiod1960–2099.ModelsG to I are froma land carbon-cycle parameter ensemble carriedout
with theHadCM3model under the SRES A1B scenario14, andwere run only to 2080, so differences here are for 1960 to 2080. In all cases,model runswere carried out both including and excluding climate effects
on the carbon cycle (‘coupled’ and ‘uncoupled’, respectively), so that the impacts of climate–carbon-cycle feedbacks could be diagnosed.
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Figure 1 | Projected changes in land carbon storage in the tropics from
coupled climate–carbon-cyclemodels. a, Upper and lower estimates from the
C4MIP models3 (A–F in Table 1) for uncoupled (black lines) and coupled
simulations (red lines). b, Impact of changes in tropical temperature versus
impact of changes in atmospheric CO2 on tropical land carbon, for the C4MIP
models (black letters) and three variants of theHadCM3Cmodel14 (red letters).
The horizontal lines represent the new constraint presented in this study.
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Figure 2 | Observed relationship between variations in the growth rate of
atmospheric CO2 and tropical temperature. a, Annual anomalies in CO2

growth rate (black) and tropical temperature (red) versus year. b, Sensitivity of
CO2 growth rate to tropical temperature, with numbers representing the
individual years in a and the dashed line showing the best-fit straight line, which
has a gradient of 5.16 0.9GtC yr21K21. The years in red were not included in
this fit because they directly followedmajor volcanic perturbations to the climate.
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Simple Linear Regression has been used to suggest that tropical 
temperature variations control the atmospheric CO2 growth rate

Cox et al., 2013
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implicitly contain some response to temperature. However, our results 
show that GRACE TWS can be almost entirely reconstructed from 
precipitation anomalies alone (Extended Data Fig. 4) with very little 
impact from temperature variability. Partial correlations indicate that 
the global CGR–TWS relationship remains significant after controlling 
for the effect of either global or tropical temperature (partial corre-
lations r of −0.72; Fig. 3b, blue bars). This means that most of the 
information on CGR variations that is contained in TWS cannot be 

found in temperature. In contrast, controlling for the effect of TWS 
strongly decreases partial correlations between CGR and temperature 
(Fig. 3b, orange bars). Using univariate linear regression (Methods), we 
find a global yearly sensitivity of −1.33 Gt (95% confidence interval 
(CI) spanning from −1.85 to −1.07 Gt) of carbon per year for each 
additional Tt of water stored on land (Fig. 3c). This corresponds to a 
ratio of roughly 1.3 g C yr−1 per kg H2O. When including both TWS 
and temperature in a bivariate regression, the sensitivity to TWS is 
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Fig. 1 | IAV in CGR and TWS. a, Monthly de-seasonalized and  
de-trended CGR, TWS from satellite observations (GRACE) and TWS 
from a statistical model (GRACE-REC15). The vertical axis is inverted for 
CGR so that positive (downwards) CGR anomalies indicate a weaker land 
carbon sink. A 6-month moving average was applied to GRACE data for 

readability. b, Yearly CGR versus GRACE TWS anomalies. c, d, Composite 
mean TWS anomalies associated with the 5% highest (c) and 5% lowest (d) 
monthly CGR (n = 8; see Source Data for Fig. 1). Inset bar plots indicate 
the season of the corresponding months. Composites based on GRACE-
REC show similar patterns (Extended Data Fig. 2).
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Fig. 2 | Correlations between CGR and meteorological drivers over 
different spatial domains at monthly and yearly scale. The years  
1991–1993 affected by the eruption of Mt Pinatubo are excluded 
(Methods). Observations (circles) are distinguished from model-based 
estimates (squares). A white cross indicates a non-significant correlation 

(P > 0.05; Methods). Horizontal lines correspond to the 95% confidence 
interval of the correlation coefficient (Methods). The different products as 
well as the number of data points used to generate these results are listed in 
Supplementary Tables 1 and 3.
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Alternatively, the global CO2 growth rate has shown an even higher 
correlation with GRACE terrestrial water storage

Humphrey et al., 2018
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Figure 1 | Climatic controls on NEE IAV at global and local scales 
for the period 1980–2013 derived from machine-learning-based 
(FLUXCOM) and process-based (TRENDY) models. a, b, The 
comparison of globally integrated annual NEE anomalies with NEE 
anomalies driven only by temperature, water availability and radiation  
(all normalized by the standard deviation (s.d.) of globally integrated NEE) 

reveals temperature to be the dominant global control. R2 values between 
the climatic NEE components and total NEE are given. c, d, Mean  
grid-cell IAV magnitude (see equation (3) in Methods) of NEE 
components for latitudinal bands reveals water to be the dominant  
local control. Uncertainty bounds where given as shaded area reflect the 
spread among FLUXCOM or TRENDY ensemble members (± 1 s.d.).
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Figure 2 | Effects of spatial covariation and scale on temperature 
versus water control of NEE IAV for FLUXCOM and TRENDY models. 
Spatial patterns of the first EOF of annual NEETEMP (a, b), and NEEWAI 
(c, d) anomalies (see Methods) show large spatial coherence for NEETEMP 
(dominant positive values) and anti-correlated patterns for NEEWAI 
(positive and negative values are shown on the colour scale; magnitudes 
are not informative and were omitted for clarity). This is underpinned in 
the inset pie charts which show the proportion of total positive (black) and 
negative (grey) covariances among grid cells for NEETEMP and NEEWAI 

anomalies (see equations (4) and (5) in Methods). e, f, The relative 
dominance (see equation (6) in Methods) of NEETEMP (green) increases 
with successive spatial aggregation, while the relative dominance of 
NEEWAI (blue) decreases. Outer uncertainty bounds in e and f given as 
shaded area refer to the spread among respective ensemble members  
(± 1 s.d.); inner uncertainty bounds refer to ± 1 s.d. with respect to the 
change of relative dominance with spatial aggregation (see equation (7)  
in Methods).
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versus water control of NEE IAV for FLUXCOM and TRENDY models. 
Spatial patterns of the first EOF of annual NEETEMP (a, b), and NEEWAI 
(c, d) anomalies (see Methods) show large spatial coherence for NEETEMP 
(dominant positive values) and anti-correlated patterns for NEEWAI 
(positive and negative values are shown on the colour scale; magnitudes 
are not informative and were omitted for clarity). This is underpinned in 
the inset pie charts which show the proportion of total positive (black) and 
negative (grey) covariances among grid cells for NEETEMP and NEEWAI 

anomalies (see equations (4) and (5) in Methods). e, f, The relative 
dominance (see equation (6) in Methods) of NEETEMP (green) increases 
with successive spatial aggregation, while the relative dominance of 
NEEWAI (blue) decreases. Outer uncertainty bounds in e and f given as 
shaded area refer to the spread among respective ensemble members  
(± 1 s.d.); inner uncertainty bounds refer to ± 1 s.d. with respect to the 
change of relative dominance with spatial aggregation (see equation (7)  
in Methods).
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Global patterns may obscure the drivers that account for variability at the 
ecosystem to regional scale

Jung et al., 2017

Spatial scale [km]



Ultimately, metrics to account for 
interannual variability must both account for 

regional mechanisms and top-down 
emergent behavior of atmospheric CO2
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A quantitative description of the mechanisms and relationships that drive these patterns is 
crucial to have confidence in prognostic model
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 Can we trust long-term 
emergent timescales if we 
can’t trust other emergent 

timescales?

Figures: Will Wieder



Correctly attributing IAV in CO2 requires more process level insight about component fluxes



Large seasonal cycle in boreal forest SIF from GOME-2
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Butterfield et al., in review



Interannual or climate-driven variations are at most a few percent of peak SIF signal

Butterfield et al., in review



Although noisy, we can decompose 
SIF IAV into dominant modes

Redistribution

Amplification

Butterfield et al., in review



SIF IAV in any given year reflects weighted sum of 
redistribution and amplification vectors

SIF IAV  = wr SV1 + wa SV2

Butterfield et al., in review



Most strongly correlated 
with spring temperatures

Most strongly correlated 
with spring water availability 

from GRACE

Climate drivers of IAV modes are different across 
Northern Hemisphere

Butterfield et al., in review



High spring 
temperature

Above average 
growing 
season 

productivity
Draws down 

soil water 
resources

Summer and 
fall SIF is 

below average
Growing 

season IAV in 
productivity, 
and influence 
on net sink, is 
closer to zero

Contribution of productivity variabilities to net CO2 
signal is self-limiting

Butterfield et al., in review



Correctly attributing IAV in CO2 requires more process level insight about component fluxes

SIF

XCO2

residual



 

Figure 4: Interannual variability of CO2 from global net ecosystem productivity (CO2
NEP 

IAV) for testbed models (colors) and MBL observations (black). High-latitude, mid-latitude and 
tropical land belts are shown for the Northern Hemisphere (a-c) and Southern Hemisphere (d-f).  
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Basile et al.,  in review.

We simulate patterns of CO2 variability owing to three different models for 
heterotrophic respiration affected by identical climate and NPP fluxes



Phasing is important at 
interannual timescales: 

MIMICS and CORPSE 
have similar IAV for HR, 

but different phase, so net 
CO2 has large difference

Basile et al.,  in review.



 

Figure 7: Comparison of regional and global interannual variability (IAV) from land fluxes 
and resulting atmospheric CO2 between 1982 and 2010. (a, c) Normalized ratio taken between 
regional-global IAV magnitude. (b, d) Linear correlation between regional-global IAV. The 
scatterplot shows a direct comparison of ratio and correlation values for land flux values (x-axes) 
and corresponding CO2 (y-axes). Shapes denote the source regions for both land fluxes and CO2 
response.  
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Variability in Southern Hemisphere 
tropical NPP flux is about 60% of 
variability in global NPP flux 

Global 
Fluxes
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Variability in Southern Hemisphere 
tropical NPP flux is about 60% of 
variability in global NPP flux 

Likewise, CO2 that contains only the 
imprint of SH tropical fluxes is about 
60% as variable as CO2 that reflects 
global fluxes 
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Variability in Southern Hemisphere 
tropical NPP flux is about 60% of 
variability in global NPP flux 

Likewise, CO2 that contains only the 
imprint of SH tropical fluxes is about 
60% as variable as CO2 that reflects 
global fluxes 

SH tropical fluxes are only slightly more 
variable than NH tropical and midlatitude 
fluxes…

… but atmospheric circulation damps 
the apparent variability in these other 
latitude bands

Global 
Fluxes
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Atmospheric transport also magnifies 
the correlation of the Southern 
Hemisphere flux signal with the global 
flux signal
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In contrast to NPP, 
the Northern 
Hemisphere 
midlatitudes have 
the largest 
variability in HR 
flux and imprint on 
atmospheric CO2.
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The influence of NH 
midlatitude fluxes 
is also most 
coherent with 
global signal

Basile et al.,  in review.
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Variations in net fluxes partition evenly between Tropics and Northern midlatitudes
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Variations in net fluxes partition evenly between Tropics and Northern midlatitudes

Although tropical influence is more temporally coherent with global signal
Basile et al.,  in review.



Ultimately atmospheric CO2 determines the magnitude of radiative forcing, AND reflects the 
integral of global fluxes, so reconciling bottom-up and other satellite-based metrics for 
variability with atmospheric CO2 from a mechanistic perspective is important 

Interannual variability in longest-standing SIF observations from GOME-2 requires regional 
aggregation and reveals the importance of intraseasonal redistribution in productivity in 
response to climate variations 

While much NPP variability arises in the tropics, modeling and CO2 fingerprinting analysis 
suggests respiration is a dominant source of IAV in the extratropics  

Diagnostic modeling is an essential tool to understand how to use datasets in synergy to 
develop a quantitative carbon-climate predictions 


