

Polarimetric SAR Interferometry (Pol-InSAR)

for Structural Forest Parameter Estimation

K. Papathanassiou, F. Kugler, A. Torano Caioya, M. Padrini, S-L. Lee & I. Hajnsek German Aerospace Center (DLR) Microwaves and Radar Institute (DLR-HR)

in der Helmholtz-Gemeinschaft

DLR für Luft- und Raumfahrt e.V. in der Helmholtz-Gemeinschaft

Microwaves and Radar Institute

VU 5 > Autor Name

Traunstein Test Site

Deutsches Zentrum für Luft- und Raumfahrt e.V. in der Helmholtz-Gemeinschaft

Traunstein Test Site

Deutsches Zentrum für Luft- und Raumfahrt e.V. in der Helmholtz-Gemeinschaft

Microwaves and Radar Institute

VU 7 > Autor Name

Height to Biomass Allometry

Nationalpark Bayrischer Wald

Natural development since 1972

Montane spruce forest > 1100m asl. <u>Submontane mixed forest</u> Floodplain spruce forest < 600m asl

Height Range (H100): 5 - 45m Biomass Range: 40 ~ 450 t/ha

Steep Slopes

Deutsches Zentrum für Luft- und Raumfahrt e.V. in der Helmholtz-Gemeinschaft **Ebersberger Forst**

Bürgerwald Traunstein

Intensely managed

Single species (Spruce) Height Range (H100): 5 - 40m Biomass Range: 40 ~ 350 t/ha Flat Terrain "Close to Nature" Temperate managed forest

N. Spruce, E. Beech, White Fir Height Range (H100): 10 - 40m Biomass Range: 40 ~ 450 t/ha Moderate Slopes

Ο

Estimated biomass (Mg/ha)

Deutsches Zentrum DLR für Luft- und Raumfahrt e.V. in der Helmholtz-Gemeinschaft

Three Legendre polynomials explain the 92% of the total biomass !!!

r2 = 0.90

Estimated biomass (Mg/ha)

r2 = 0.91

L.Bessette, S.Ayasli "Ultra Wide Band P-3 and Carabas II Foliage Attenuation and Backscatter Analysis", Proceedings of IEEE Radar Conference, 2001.

für Luft- und Raumfahrt e.V. in der Helmholtz-Gemeinschaft

DLR für Luft- und Raumfahrt e.V. in der Helmholtz-Gemeinschaft

DLR Deutsches Zentrum für Luft- und Raumfahrt e.V. in der Helmholtz-Gemeinschaft

Tandem-L

85 7m (Az) x 1.75m (Rg) 650 -28 / -30 .5 .5 5 5 > -20 Quad

Single-Pass

ONERA

biomass

435MHz (P-band)

6
12.5 m (Az) x 25m (Rg)
580
-28 / -30
1
.5
5-10
>-20
Quad
Repeat-Pass (Tmp Baseline ≥ 25D)

Bandwidth [MHz] Geometric Resolution SLC [m] Orbit [km] NESZ [dB] Absolute Radiometry [dB] Relative Radiometry [dB] Phase Accuracy [deg] Phase Accuracy [deg] Rg / Az Ambiguity Ratio [dB] Polarimetry Interferometry

> Prifysgol Cymru Aberystwyth 1872 The University of Wales

Central Frequency

Bio & Geo-Physical Parameter Retrieval Algorithm Definition for Active Remote Sensing at P- & L-band Study

Tandem-L

7m (Az) x 1.75m (Rg)

650

-28 / -30

.5

.5

biomass

nd)	Central Frequency
	Bandwidth [MHz]
n (Rg)	Geometric Resolution SLC [m]
	Orbit [km]
	NESZ [dB]
	Absolute Radiometry [dB]
	Relative Radiometry [dB]
	Phase Accuracy [deg]
	Rg / Az Ambiguity Ratio [dB]
	Polarimetry
eline ≥ 25D)	Interferometry
etrieval Algorithm Definition	

435MHz (P-bar

6	
12.5 m (Az) x 25m (Rg)	
580	
-28 / -30	
1	
.5	
5-10	
>-20	
Quad	
Repeat-Pass (Tmp Baseline \geq 25D)	

5 > -20 Quad

Single-Pass

ONERA

Bio & Geo-Physical Parameter Retrieval Algorithm Definition for Active Remote Sensing at P- & L-band Study

Deterioration of Resolution (P-band BIOSAR)

Degraded Resolution (50m x 50m Multilook)

Bio & Geo-Physical Parameter Retrieval Algorithm Definition for Active Remote Sensing at P- & L-band Study

ONERA

Ρ

TanDEM-X Data Acquisition Modes

- both satellites transmit and receive independently
- susceptible to temporal decorrelation & atmospheric disturbances
- no PRF and phase synchronisation required (backup solution)

- one satellite transmits and both satellites receive simultaneously
- small along-track displacement required for Doppler spectra overlap
- requires PRF and phase synchronisation

Alternating Bistatic

- transmitter alternates between PRF pulses
- provides three interferograms with two baselines in a single pass
- enables precise phase synchronisation, calibration & verification

DLR

Deutsches Zentrum für Luft- und Raumfahrt e.V. in der Helmholtz-Gemeinschaft

Standard DEM Mode

TSX-TDX Monostatic Mission Phase

TanDEM-X Data Acquisition Modes

- both satellites transmit and receive independently
- susceptible to temporal decorrelation & atmospheric disturbances
- no PRF and phase synchronisation required (backup solution)

- one satellite transmits and both satellites receive simultaneously
- small along-track displacement required for Doppler spectra overlap
- requires PRF and phase synchronisation

Standard DEM Mode

Microwaves and Radar Institute

Alternating Bistatic

- transmitter alternates between PRF pulses
- provides three interferograms with two baselines in a single pass
- enables precise phase synchronisation, calibration & verification

Deutsches Zentrum für Luft- und Raumfahrt e.V. in der Helmholtz-Gemeinschaft

Test Site: Krycklan, Sweden

DLR Deutsches Zentrum für Luft- und Raumfahrt e.V. in der Helmholtz-Gemeinschaft

Traunstein Test Site

Here we are ...

Multi-Baseline Polarimetric SAR Interferometry:

- ➤ Accurate (<10%) estimation of forest top height at high spatial resolutions (20-50m Grid);</p>
- Low frequency vertical forest structure can be resolved by a "realistic" number of acquisitions (20-50m Grid).

Above ground forest Biomass:

- Structure based (AG) Biomass estimators promise accuracy and stability across very different forest conditions;
- ✓ Mapping of "radar" structure to biomass structure has to be resolved.

Implementation:

Choice of Frequency is associated with certain physical limitations as well as implementation constrains:

L-band is - for most forest conditions - the "optimum" frequency for vegetation structure parameter estimation.

✓ Temporal decorrelation is the most critical parameter with respect to Pol-InSAR performance

Uniqueness of Pol-InSAR: Global Mapping @ High Spatial Resolution

State of the art implementation is able to provide at a spatial resolution on the order of 7x2m

global (single/dual-pol) coverage every week

forest / non-forest mapping at 10x10m

global (quad-pol) coverage every 2 weeks

forest height change detection at 30x30m

global structure map (6 baselines) every 2 months

forest height map at 30x30m
forest structure map 50x50m

R Deutsches Zentrum für Luft- und Raumfahrt e.V. in der Helmholtz-Gemeinschaft

Polarimetric SAR Interferometry (Pol-InSAR)

for Structural Forest Parameter Estimation

K. Papathanassiou, F. Kugler, A. Torano Caioya, M. Padrini, I. Hajnsek **German Aerospace Center (DLR) Microwaves and Radar Institute (DLR-HR)**