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Forest structure influences habitat quality for 
many wildlife species
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Forest structure influences habitat quality for 
many wildlife species



Challenges to understanding understory 
vegetation structure from remotely sensed data



Can ecological theory improve predictions of 
understory vegetation structure from remotely 

sensed data?
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Metabolic scaling theory: general rules about 
growth, size, & abundance relationships
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Can ecological theory improve predictions of 
understory vegetation structure from remotely 
sensed data?
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However, this theory 
ignores functional 

difference between species Live slow, Die old

Live fast, Die young



Predictions of 
theory 
incorporating 
fast-slow life 
histories



Exploring predictions at Harvard Forest
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Exploring predictions at Harvard Forest
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Also, this theory assumes equilibrial
conditions

Macdowell et al. 2020



Successional convergence to MST



Prediction: Disturbance generates predictable 
deviations from Metabolic Scaling Theory



Objective: Spatio-temporal modeling of forest structure

+

In situ data across time Static & Dynamic Remotely Sensed data



Spatio-temporal modeling of forest structure

+

In situ data across time Static & Dynamic Remotely Sensed data



Data pre-processing
LandTrendr for Google 

Earth Engine

Van doninck et al. in prep

Landsat

2005

Each 30-m pixel timeseries broken into 
segments 

E.g.: start year of segment with greatest vegetation loss

1984
2020

2020

2005

1984

magnitude, 
rate, &
duration of change

2005



Detection

Disturbance

No disturbance

Van doninck et al. in prep

2 Random Forest models 
with reference points* 

are calibrated 
with spatial information:

High

Low

*25,000 reference points across CONUS (1985-2020)
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Detection Attribution

Disturbance

No disturbance

Clearcut

Biotic

Van doninck et al. in prep

2 Random Forest models 
with reference points* 

are calibrated 
with spatial information:

High

Low

*25,000 reference points across CONUS (1985-2020)
End Result: wall-to-wall 30-m CONUS map of disturbance 
variables & disturbance type (each year 1985-2020)



Future directions: Using RS data and models to make predictions across 
space and time

+

Static & Dynamic Remotely Sensed data

Predictions of 
functional group 
abundance and 
size across space 
and time



Thank you!
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NEON remotely sensed crowns & Hemlock 
Removal Experiment in-situ trees



Challenges to understanding understory 
vegetation structure from remotely sensed data



The core objective of this research is to :
incorporate disturbance through time and remote sensing 
into a scaling framework of forest structure and functional diversity.



Objective 1: Spatio-temporal modeling of forest structure and diversity

In situ data across time



Objective 1: Spatio-temporal modeling of forest structure and diversity

+

In situ data across time Static & Dynamic RS data



Objective 2: Using RS data and models from Obj. 1 to make predictions 
across space
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Objective 2: Using RS data and models from Obj. 1 to make predictions 
across space
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Static & Dynamic RS data

Predictions of 
functional group 
abundance and size 
across space



Objective 2: Using RS data and models from Obj. 1 to make predictions 
across time

+

Static & Dynamic RS data

Predictions of 
functional group 
abundance and size 
across time 

Validation


