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Global and local stressors

Warm-water reef-building corals face multiple mounting anthropogenic stressors 

Global climate stressors:

ocean heating

ocean acidification

sea level rise

worsening cyclones

Local-scale stressors:

nutrient pollutants

chemical pollutants

sedimentation

tourism

destructive fishing

invasive species



Corals bleach, die in ocean heatwaves

Anomalous ocean heat can cause:
immediate thermal death

bleaching and increased disease susceptibility after recovery of symbionts 

bleaching and eventual starvation

Recovery after severe bleaching requires 7+ years



Kalmus et al. (2022), Earth’s Future
“Past the Precipice? Projected Coral Habitability Under Global Heating” 



Data and Methods



Overview

• 35 CMIP6 models homogenized to 1° monthly grid

• 4 climate scenarios: SSP126, SSP245, SSP370, SSP585

• We statistically downscale model ensemble means using the JPL MUR 1 km SST product
• available 2002 - near present

• We calculate Degree Heating Weeks (DHW) from these time series
• We calculate climatological anomaly from mean monthly maximum at each point

• We use 3 climatological baselines: 1988, 1998, 2008 corresponding to the original CRW DHW 
formulation (Heron et al., 2014), an update (Liu et al., 2014), and the MUR centroid.

• Perform 3-month running mean and multiply by 4.34 to convert from months to weeks

• We determine year after which every subsequent 5-year and 10-year period contains an 
ocean heat event above the 8 °C-week thermal threshold
• Coral reefs require 7+ years to recover from severe bleaching (Johns et al., 2014)



Statistical Downscaling

GCM outputs are at ∼100 km scale

We downscale SST projections with 1 km JPL 
MUR observations

Standard downscaling (e.g. van Hooidonk et 
al., 2016): (1) At each coarse-scale cell time 
series, and for each month, subtract 
climatology; (2) Interpolate this coarse-scale 
anomaly time series onto the fine-scale grid; 
(3) At each fine-scale pixel, for each month, 
add the MUR climatology.

We developed a novel downscaling method by 
applying Basis Graphical Lasso (BGL, see 
Ekanayaka et al., 2022) which models spatial 
dependence structure across the coarse and 
fine scales.

Standard and BGL downscaling MSE (°C2) estimated from 
validation against withheld 2018-2020 MUR data in the central 
GBR. Reefs are indicated by brown mask. Note improvement in 
near-coastal regions. Averaged over reefs, standard had MSE of 
0.25°C2 while BGL had MSE of 0.17°C2, a reduction of 31%. 



Thermal Departure Projections



(top) The highest thermal threshold and most optimistic climate scenario: TD5Y, 8 DHW2008 threshold, and SSP126.
(bottom) The lowest thermal threshold and most pessimistic scenario: TD10Y, 8 DHW1988 threshold, and SSP585. 

Global maps of thermal departure



Global maps of thermal departure



Cumulative histograms

SSP126 (black) 
SSP245 (blue) 
SSP370 (green) 
SSP585 (red) 

TD5Y  8 DHW1988

TD10Y  8 DHW1988

TD5Y  8 DHW2008

TD10Y  8 DHW2008



Thermal departure milestones

90% TD10Y by 2020

99% TD10Y by 2044
SSP126 avoids this

2°C is a hard  limit

Projected years and GMSTAs after which fewer than the stated percentage of 1 km 
reef locations remain below the thermal thresholds, for a return timescale of 10 years 



Thermal departure milestones

Small number of 1 km 
reefs projected to 
remain at all metrics

0% (rounded) at 2°C 

Percentages and numbers of reef locations remaining below the stated thresholds, for 
a return timescale of 10 years 



Limitations of the study

• Using a global degree-heating-week thermal threshold for every reef

• Using 3 climatological baselines mitigates this somewhat

• Fully mitigating this limitation will require extensive global bleaching event dataset

• Treating all CMIP6 global models equally

• Model-weighting “redo” of the analysis is in progress

• Does not account for potential adaptation using empirical estimates

• Does not account for different species and assemblages

• Does not account for non-thermal ecological factors (other predictive variables)

These limitations are shared by other projection studies from global models.



Future work

Use observations to skill-weight models at 1 km locations

• Confidence for refugia projections

• Uncertainty quantification

• “Redo” of analysis with weighting is in progress

Geospatial model using bleaching remote sensing data

• Replace global DHW threshold

• Add additional predictor variables

Investigate projected thermal refugia locations with dynamical models

Apply and advance design and methods in context of other ecosystems:

• New Advanced Information Systems Technology (AIST) project: 
“Ecological Projection Analytic Collaborative Framework 
(EcoPro)” poster

• New Health and Air Quality (HAQ) project: “Neighborhood-Scale 
Extreme Humid Heat Health Impacts”



Kalmus et al. (2022), AGU Earth’s Future
“Past the Precipice? Projected Coral Habitability Under Global Heating”

• We project over 91% of coral reefs will now experience severe-bleaching-level ocean heat 
recurring at least once every 10 years

• We project over 99% of reefs will experience severe-bleaching-level ocean heat at least 
twice per ten years by 2036 under SSP3-7.0 

• We find SSP1-2.6 to be the only scenario not consistent with near-complete global severe 
degradation or loss of coral reefs 

• Without rapid cessation of fossil fuel use, coral reefs as we know them will be gone well 
before 2°C

Conclusion
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Comparisons to prior studies

Being explicit about the climatological baseline allows apples-to-apples comparisons:

• Schleussner et al. (2016) project a 70–90% loss at 1.5°C and 99% loss at 2°C using CMIP3 
global models (no downscaling) and thermal criteria of TD5Y and 8 DHW1990

• These results were highlighted in the IPCC Special Report on 1.5°C of warming
• Our study projects a 95-98% loss at 1.5°C and a 99.7% loss at 2°C

• Donner (2009) project 70% loss by 2025 and 90% loss by 2040 using one global model 
(no downscaling), criteria of TD5Y and 8 DHW1988 and SRES B1 (similar to SSP245)
• Our study projects 70% and 90% loss by 2019 and 2023 under SSP245

• Frieler et al. (2013) project 90% loss at 1.5°C, and complete loss before 2°C using 19 
CMIP3 models (no downscaling) and thermal criteria of TD5Y and 8 DHW1990

• Our study projects over 95% TD5Y at 8 DHW1988 and 1.5°C, and over 99.7% at 2°C

• Dixon et al. (2022) project a 99.8% loss at 1.5°C and 100% at 2°C using CMIP6 models 
and downscaling to 1 km, and thermal criteria of TD10Y and  4 DHW1988

• Our study does not use such a low thermal threshold



Thermal departure milestones

90% TD5Y before 2021 
and TD3Y before 2026 

99% TD3Y by 2031, 2035, 
and 2038 for SSP585, 
SSP370, SSP245.
SSP126 avoids this.

2.1°C of GMSTA looks like 
a hard upper limit.



Conclusions

• Most of the world’s reefs are already in a 
regime of unrelenting thermal stress

• Our projections include a small number of 
robust thermal refugia locations

• Under TD5Y, 1% of reef locations remain at 
1.5°C global heating, but none at 2.0°C

• Prospects for corals are far better under 
SSP126 than SSP245, suggesting that reefs 
face a critical crossroads today (not in the 
future)

• Data science methods improve precision 
and skill of ecological projections

• These methods can be applied widely in 
similar contexts



2014-17 was a deadly period for corals

Hughes et al. 2018

In 2015-2016
• red: > 30% bleaching
• orange: < 30% bleaching
• blue: no bleaching
Hughes et al. 2018

100 locations monitored

In 2014-2017:
• >75% of reef 

locations surpassed 
bleaching thresholds

• >30% severe
Eakin et al. 2018



Ocean heatwaves are worsening

Hughes et al. 2018

Example: one model (HadGEM2-ES) projection at one point on GBR



Projected robust thermal refugia



Projections of coral bleaching and mortality

• IPCC SR1.5: 70-90% mortality at 1.5°C of global heating, 99% mortality at 2°C

Hoegh-Guldberg 1999



Bayesian Ensemble Optimization (BEO)

• This part of the analysis was led by Elias Massoud

• Assign skill-based weights to model projections
• Historical GCM model runs (hindcasts) compared to observation SST records (HadISST)

• We do this on a maximum-annual DHW basis to match analysis metric

• BEO uses Bayesian inference to estimate model weights to maximize log-likelihood function

• BEO handles model dependence by preferring independent models, allowing us to avoid 
arbitrary selection of model instances (e.g. r18i2p1f1)

Massoud  et al. 2020



Bayesian Ensemble Optimization (BEO)

• BEO improves RMSE by 63% compared to unweighted ensemble, even for hindcast projections four 
decades in the future

• In an identical analysis without BEO (unweighted), every robust refugia location disappears

• We conclude that analyses without skill-weighting incorrectly identify refugia

Histograms of differences between truth and projections of mean of annual maxima of DHW for 2005-2014 for 1° pixels

unweighted
ensemble BEO-weighted

ensemble,
1980-1999 training

BEO-weighted
ensemble,
1960-1979 training 





Some locations may provide temporary refuge

van Hooidonk et al. 2013

Projections are confounding
• disease
• other stressors
• depth DHW(z)
• new current regimes
• species diversity
• individual diversity
• adaptation



Bayesian hierarchical model

Combines model weights and statistical downscaling in one integrated model

Produces monthly SST projection PDFs on 1 km grid

The hierarchical model contains components to describe:
spatial and spatio-temporal variation in fine-scale SST

how a GCM grid cell is related to the fine-scale SST

model departure by incorporating model weights in a prior distribution

The hierarchical model propagates uncertainty in an integrated way but is more 
computationally expensive than the Gaussian process model.



Data

• GCM averages from 6/2002 to 12/2100
• Flat means of the following models:

• MUR data from 6/2002 to 12/2019

32

ACCESS-CM2 r1i1p1f1 MIROC-ES2L r1i1p1f2

ACCESS-ESM1-5 r1i1p1f1 MIROC6 r1i1p1f1

BCC-CSM2-MR r1i1p1f1 MPI-ESM1-2-HR r1i1p1f1

CNRM-CM6-1 r1i1p1f2 UKESM1-0-LL r1i1p1f2

CNRM-ESM2-1 r1i1p1f2 CESM2 r1i1p1f1 gr

CanESM5 r10i1p1f1 CESM2-WACCM r1i1p1f1 gr

CanESM5-CanOE r1i1p2f1 INM-CM4-8 r1i1p1f1 gr1

EC-Earth3-Veg r1i1p1f1 INM-CM5-0 r1i1p1f1 gr1

IPSL-CM6A-LR r4i1p1f1 MRI-ESM2-0 r1i1p1f1 gr

MCM-UA-1-0 r1i1p1f2



Trend

• Modeled in two steps
• Averaged annual cycle

• Averaged annual cycle at MUR pixels is calculated by taking the 
average of monthly SSTs over the years.

• Averaged annual cycle at model pixels is calculated by 
aggregating MUR averages into model pixels.

• Interpolation
• Detrend model data by subtracting annual cycle and perform 

bivariate interpolation .

33



• NOTES

• Bilinear interpolation requires 4 neighbors which form a 
rectangular grid. Does not work here!

• Bivariate interpolation works when neighbors are irregularly 
spaced. It is a spline interpolation

• Trend = annual cycle + interpolated values

34



Interpolation-12/2019
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Trend (Annual cycle + Interpolated values) -
12/2019
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Interpolation-12/2100
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Trend (Annual cycle + Interpolated values) –
12/2100
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Next steps

• Find residuals by subtracting the trend from observed MUR 
SSTs.

• Use laGP to model “residuals” with three input variables.
• Longitude
• Latitude
• GCM – trend (fine scale)

39



laGP predictions

40



Trend+Residuals – 12/2019
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Observed SSTs , GCM averages and Downscaled 
SSTs – 12/2019
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Trend+Residuals – 12/2100
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GCM averages and Downscaled SSTs - 12/2100
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Downscaled SSTs for 12/2019 vs 12/2100
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Temperature difference between 12/2019 and 
12/2100
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Computation

• Data size: 36 coarse grids and 347,686 MUR pixels 
• Predictions are made only at 89,292 MUR coral pixels.

• Total number of future months: 961
• From 1/2020 to 12/2100

• Computation time for one month: 6 hours 

• Total number of coral pixels over the globe: 989,936

• About a week per SSP scenario on Pleiades 

47



Summary

• We have shown preliminary results for coarse-gridded (1°x1°) GCM projections

• We have implemented observational model weighting

• We have implemented LaGP downscaling

• We are beginning work on a point process model to set spatially-specific thresholds

• We have plans to implement a Bayesian hierarchical model

Peter.M.Kalmus@jpl.nasa.govIdentifying coral refugia from observationally 
weighted climate model ensembles 

mailto:Peter.M.Kalmus@jpl.nasa.gov


Bayesian hierarchical model

• Combines model weights and statistical downscaling in one integrated model

• Produces monthly SST projection PDFs on 1 km grid

• Solve with MCMC, implemented in R

• SST denoted: 

• MUR 1 km data: 

• K ESMs, M grid cells: 



• ESM output:

• relates fine scale to ESM scale        bias of ESM      Gaussian noise, 

• SST: 

• trend/regression term      process model TBD    Gaussian noise, 

• Apportion N areal units at fine res:

• (2) becomes:

• similarly let: 

• (1) becomes:  
•

Data model



Process Model

• Specifies distribution of spatial-temporal process, and the model bias.

• Incorporates the observational model weights.

• Assume                  to be Gaussian process w/ spatio-temporal covariance 

• Assume additive approx. Gaussian process (see e.g. Ma, Konomi, and Kang 2018)

• Assume   

scaling factors (unknown)



Parameter model (priors)

Gaussian prior with zero mean, multiple of the identity prior 
covariance matrix with large variance

standard conjugate inverse gamma priors

We’ll first try: 


