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Global and local stressors
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Global climate stressors: 5 . N, T
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ocean heating
ocean acidification
sea level rise
worsening cyclones

Local-scale stressors:
nutrient pollutants
chemical pollutants
sedimentation
tourism
destructive fishing

invasive species
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Corals bleach, die in ocean heatwaves

Anomalous ocean heat can cause:
immediate thermal death
bleaching and increased disease susceptibility after recovery of symbionts
bleaching and eventual starvation

Recovery after severe bleaching requires 7+ years

symbiosome

ISEIVERET
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Key Points:

 We project over 91 percent of coral reefs will now experience severe-bleaching-level
ocean heat recurring at least once every 10 years

 We project over 99 percent of reefs will experience severe-bleaching-level ocean heat
at least twice per ten years by 2036 under SSP3-7.0

« We find SSP1-2.6 to be the only scenario not consistent with near-complete global
severe degradation or loss of coral reefs

Kalmus et al. (2022), Earth’s Future
“Past the Precipice? Projected Coral Habitability Under Global Heating”
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Data and Methods
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Overview

35 CMIP6 models homogenized to 1° monthly grid
4 climate scenarios: SSP126, SSP245, SSP370, SSP585

We statistically downscale model ensemble means using the JPL MUR 1 km SST product
e available 2002 - near present

We calculate Degree Heating Weeks (DHW) from these time series
* We calculate climatological anomaly from mean monthly maximum at each point

 We use 3 climatological baselines: 1988, 1998, 2008 corresponding to the original CRW DHW
formulation (Heron et al., 2014), an update (Liu et al., 2014), and the MUR centroid.

e Perform 3-month running mean and multiply by 4.34 to convert from months to weeks

We determine year after which every subsequent 5-year and 10-year period contains an
ocean heat event above the 8 °C-week thermal threshold

e Coral reefs require 7+ years to recover from severe bleaching (Johns et al., 2014)



Statistical Downscaling

GCM outputs are at ~100 km scale

We downscale SST projections with 1 km JPL
MUR observations

Standard downscaling (e.g. van Hooidonk et
al., 2016): (1) At each coarse-scale cell time
series, and for each month, subtract
climatology; (2) Interpolate this coarse-scale
anomaly time series onto the fine-scale grid;
(3) At each fine-scale pixel, for each month,
add the MUR climatology.

We developed a novel downscaling method by
applying Basis Graphical Lasso (BGL, see
Ekanayaka et al., 2022) which models spatial
dependence structure across the coarse and
fine scales.

latitude
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BGL-ssp126

<
iﬁ
167 YR

)’

S
E -18
©
-20 4
-22 4
146 148 150 146 148 150
longitude longitude
0.1 0.2 0.3 0.4 0.5

Standard and BGL downscaling MSE (°C?) estimated from
validation against withheld 2018-2020 MUR data in the central
GBR. Reefs are indicated by brown mask. Note improvement in
near-coastal regions. Averaged over reefs, standard had MSE of
0.25°C2while BGL had MSE of 0.17°C?, a reduction of 31%.
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Thermal Departure Projections



Global maps of thermal departure
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(top) The highest thermal threshold and most optimistic climate scenario: TD5Y, 8 DHW2008 threshold, and SSP126.
(bottom) The lowest thermal threshold and most pessimistic scenario: TD10Y, 8 DHW1988 threshold, and SSP585.
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Thermal departure milestones

Projected years and GMSTAs after which fewer than the stated percentage of 1 km
reef locations remain below the thermal thresholds, for a return timescale of 10 years

30% 10% 1% 30% 10% 1% 30% /10%, 1%

90% TD10Y by 2020

Year in twenty-first century

SSP126 25 39 — 17 29 | —\ 16 20 | 34
SSP245 25 39 23 17 28 44 16 18 | 34
SSP370 26 33 47 19 27 139 16 19 | 33
SSP585 22 30 42 16 25 36 16 17/ 30

99% TD10Y by 2044
SSP126 avoids this

2°Cis a hard limit

Global mean surface temperature anomaly (°C)

SSP245 1.4 1.7 /1.9 1.2 1.0 1.8 1.1 1.2 1.7
SSP370 1.4 1.7 119, 1.2 1.0 1.8 1.1 1.2 1.6
SSP585 1.3 1.5 1.9/ 1.1 1.4 1.7 1.1 1.2 1.5
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Thermal departure milestones

Percentages and numbers of reef locations remaining below the stated thresholds, for
a return timescale of 10 years

8 DHW2008 8 DHW1998 8 DHW1988
1.5°C 1.7°C 2.0°C 1.,5°C 1.7°C 2.0°C 1.5°C 1.7°C 2.0°C

Percent 1 km? reef locations remaining below threshold

SSPo4s 6% 0% 0% 1% 397 0% 3%, 1% 0% 0% (rounded) at 2°C
SSP370  24% 6% 0% 9% 1% 0% 2% 1% 0% Small number of 1 km
SSP585  15% 3% |\ 0% 5% 1% |\ 0%/ 1% 0% | 0% reefs projected to

Number of 1 km? reef locations remaining below threshold, out of 773K remain at all metrics

SSP245 201K 68K 4K 83K 21K 2K 24K 6K 729
SSP370 191K 52K 9K 73K 14K 4K 17K oK 1233
SSP585 117K 25K 6K 40K 9K 3K 10K 4K 2265
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Limitations of the study

* Using a global degree-heating-week thermal threshold for every reef
e Using 3 climatological baselines mitigates this somewhat
* Fully mitigating this limitation will require extensive global bleaching event dataset

* Treating all CMIP6 global models equally
 Model-weighting “redo” of the analysis is in progress

* Does not account for potential adaptation using empirical estimates
* Does not account for different species and assemblages

 Does not account for non-thermal ecological factors (other predictive variables)

These limitations are shared by other projection studies from global models.
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Future work

Use observations to skill-weight models at 1 km locations
* Confidence for refugia projections
e Uncertainty quantification
 “Redo” of analysis with weighting is in progress

Geospatial model using bleaching remote sensing data
* Replace global DHW threshold
* Add additional predictor variables

Investigate projected thermal refugia locations with dynamical models

Apply and advance design and methods in context of other ecosystems:

 New Advanced Information Systems Technology (AIST) project:
“Ecological Projection Analytic Collaborative Framework
(EcoPro)” poster

* New Health and Air Quality (HAQ) project: “Neighborhood-Scale
Extreme Humid Heat Health Impacts”
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Conclusion

We project over 91% of coral reefs will now experience severe-bleaching-level ocean heat
recurring at least once every 10 years

We project over 99% of reefs will experience severe-bleaching-level ocean heat at least
twice per ten years by 2036 under SSP3-7.0

We find SSP1-2.6 to be the only scenario not consistent with near-complete global severe
degradation or loss of coral reefs

Without rapid cessation of fossil fuel use, coral reefs as we know them will be gone well
before 2°C

Kalmus et al. (2022), AGU Earth’s Future
“Past the Precipice? Projected Coral Habitability Under Global Heating”
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Comparisons to prior studies

Being explicit about the climatological baseline allows apples-to-apples comparisons:
e Schleussner et al. (2016) project a 70-90% loss at 1.5°C and 99% loss at 2°C using CMIP3
global models (no downscaling) and thermal criteria of TD5Y and 8 DHW 44,
* These results were highlighted in the IPCC Special Report on 1.5°C of warming
e Our study projects a 95-98% loss at 1.5°C and a 99.7% loss at 2°C
 Donner (2009) project 70% loss by 2025 and 90% loss by 2040 using one global model
(no downscaling), criteria of TD5Y and 8 DHW 445 and SRES B1 (similar to SSP245)
* QOur study projects 70% and 90% loss by 2019 and 2023 under SSP245
* Frieler et al. (2013) project 90% loss at 1.5°C, and complete loss before 2°C using 19
CMIP3 models (ho downscaling) and thermal criteria of TD5Y and 8 DHW o4,
* Our study projects over 95% TD5Y at 8 DHW o¢¢ and 1.5°C, and over 99.7% at 2°C
* Dixon et al. (2022) project a 99.8% loss at 1.5°C and 100% at 2°C using CMIP6 models
and downscaling to 1 km, and thermal criteria of TD10Y and 4 DHW ¢
e Our study does not use such a low thermal threshold
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Thermal departure milestones

TD1Y TD3Y TD5Y
SSP | 30% | 10% 1% 30% | 10% 1% 30% 10% 1%
Year in twenty-first century 90% TD5Y before 2021
126 | 91y | —5q | —— || 1975 [\2635 |/—5 || 1873 |(2035 | 8815 | and TD3Y before 2026
245 | 3277 | 4557 | —ap || 193 | 2313 |/ 383 || 1733 | 1937 | 30%

370 | 3015 | 383¢ | 5452 || 19¢f | 2319 || 3593 1773 | 1932 | 2835 | 99% TD3Y by 2031, 2035,
585 | 2815 | 3555 | 495§ || 1972 | 2135 [\31f5 || 1733 | 1932 | 2573 | @and 2038 for SSPS8S,
Global mean surface temperature (°C) 35P370, SSP_245 -

245 | 1679 [ 1O [[213L | L2I¥ [ 1479 [[1873 [ 1275 | 1.2J7 [[L67} | oot

370 | 1615 | 1875 [[2.077 || 1.2;7 | 1375 [[ 1735 || 1.215 | 12177 1655 | 5 joc of GuisTA looks like
585 | 1.513 | 1793 |\2.076 || 1.213 | 1.31:3 [\1.673 || 1.215 | 1.21% [\L.413 | 4 hard upper limit.
Table 1. Projected years in-the 21st century (top four rows) and global mean surface

temperatures (bottom three rows) after which fewer than the listed (30,10,1) percentage

of 1 km? reef locations remain below the thermal thresholds. Dashes indicate that the

milestone is not reached prior to 2100. Superscripts and subscripts give one standard

deviation uncertainty estimates.




Conclusions

Most of the world’s reefs are already in a
regime of unrelenting thermal stress

Our projections include a small number of
robust thermal refugia locations

Under TD5Y, 1% of reef locations remain at
1.5°C global heating, but none at 2.0°C

Prospects for corals are far better under
SSP126 than SSP245, suggesting that reefs
face a critical crossroads today (not in the
future)

Data science methods improve precision
and skill of ecological projections

These methods can be applied widely in
similar contexts

Jet Propulsion Laboratory
California Institute of Technology




2014-17 was a deadly period for corals
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100 locations monitored

In 2015-2016

* red: >30% bleaching

* orange: < 30% bleaching
* blue: no bleaching
Hughes et al. 2018

In 2014-2017:

e >75% of reef
locations surpassed
bleaching thresholds

* >30% severe

Eakin et al. 2018



Temperature anomaly (°C)

Ocean heatwaves are worsening
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Projected robust thermal refugia A it hiesiisadioiold
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Fig 3. Maps of potential coral thermal refugia, for SSP370 under TD3Y. (a) The one
percent of the world’s 1 km? reef pixels that experience TD latest. Note that the color
bar differs from the other subplots in this figure. (b) Scottish Bay and environs in the
Dominican Republic, sufficiently zoomed to show full 1 km? resolution. Note that there
is also an overlying 4 km? resolution due to the coral reef location dataset. (c) Porto
Seguro, Corumbau, and Abrolhos, Brazil. Note that some reef locations are missing
near the coast due to exclusion of 1°mixed land-ocean coarse grid cells that fewer than
ten models classify as ocean. (d) Part of the Tuamotu Archipelago. Note Hawaii at the
very northernmost part of the inset. Raroia atoll is the oblong form immediately to the
right of the lower right corner of the inset. (e¢) The Wakatobi National Marine Park in
Indonesia. Subplots b-e are generated by a visualizer available at
http://globalrefugia.org.
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Projections of coral bleaching and mortality

A. Southern region

A. Southern region B. Central region C. Northern region
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* |PCC SR1.5: 70-90% mortality at 1.5°C of global heating, 99% mortality at 2°C



Bayesian Ensemble Optimization (BEO)
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e This part of the analysis was led by Elias Massoud

* Assign skill-based weights to model projections

Historical GCM model runs (hindcasts) compared to observation SST records (HadISST)
We do this on a maximum-annual DHW basis to match analysis metric
BEO uses Bayesian inference to estimate model weights to maximize log-likelihood function

BEO handles model dependence by preferring independent models, allowing us to avoid
arbitrary selection of model instances (e.g. r18i2p1f1)

Massoud et al. 2020
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Bayesian Ensemble Optimization (BEO)

Histograms of differences between truth and projections of mean of annual maxima of DHW for 2005-2014 for 1° pixels

10° 10 10

mean:3.32 mean:-0.36 | | | mean:-0.69 ||
mm Std:5.88 B std:2.45 - - Em std:2.97 -
M count:3915 || L count:3915 | | | count:3915 ||
| 10 } 104 | J
10? unweighted | ] - .
ensemble | BEO-weighted | BEO-weighted

10? ensemble,

ensemble, ; 10%) :
| 1960-1979 training

1980-1999 training

10%}

10 10 10t

-10 0 10 20 40 =10 0 10 20 30 an =10 0 10 20 30 40

degraa heating waeks degreae haating waeks degrée heating weeks

 BEO improves RMSE by 63% compared to unweighted ensemble, even for hindcast projections four
decades in the future

* |nan identical analysis without BEO (unweighted), every robust refugia location disappears

 We conclude that analyses without skill-weighting incorrectly identify refugia
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Some locations may provide temporary refuge

30°N 1 " 9% ¥ 1
| '* w t & . .'. ' - o a5 % ?’%
Q} N . : A s R i,
- . iu t-'\b.J'é '-"h\ ¢ ,‘S - .“ sl
2 0°4y o S, ] . v ' -
o= # ' P > ) 'éb 2 8 *
s g | el o - W Y ;
WES =, R, 4
= X E: Wpm g .
,‘ { : - RCP 2.6-2046
30°S7 i i " e .
0° 30°E 60°E 90° E 120° E 150°E 180° 150°W  120°W 90°W 60°W 30°W 0°
Longitude
300 N 7 % ! -~ . ’
*P‘\ - -~'\ ' "-'--
| - =2 N e
. B
3 o N e
= -1 - . = r
'%' 0 / ' Ty, 2 . .
| [ogry * J\—t P .“; = § . |.'- «J : .f
+ali® ~ . s N M i
1 i ‘W\ i.l"f"’-"--.._"'tu RCP 8.5-2040
d ? { . ¥
30°S . o
0° 30°E 60°E 90°E 120° E 150°E 180° 150°W  120°W 90°W 60°W 30°W 0°
Longitude
E——i|
=16 yr -15to -5 yr Median +5to15yr +16 yr

van Hooidonk et al. 2013

Jet Propulsion Laboratory
California Institute of Technology

Projections are confounding

disease

other stressors
depth DHW(z)

new current regimes
species diversity
individual diversity
adaptation
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Bayesian hierarchical model

Combines model weights and statistical downscaling in one integrated model
Produces monthly SST projection PDFs on 1 km grid

The hierarchical model contains components to describe:
spatial and spatio-temporal variation in fine-scale SST
how a GCM grid cell is related to the fine-scale SST
model departure by incorporating model weights in a prior distribution

The hierarchical model propagates uncertainty in an integrated way but is more
computationally expensive than the Gaussian process model.



Data

GCM averages from 6/2002 to 12/2100
* Flat means of the following models:

MUR data from 6/2002 to 12/2019
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ACCESS-CM2 rlilplfl

MIROC-ES2L rlilp1f2

ACCESS-ESM1-5rlilp1fl

MIROCS6 rlilplfl

BCC-CSM2-MR rlilplfl

MPI-ESM1-2-HR rlilp1fl

CNRM-CM6-1 rlilplf2

UKESM1-0-LL r1ilp1f2

CNRM-ESM2-1 r1ilp1f2

CESM2 rlilplfl gr

CanESM5 r10ilp1fl

CESM2-WACCM rlilplfl gr

CanESM5-CanOE rlilp2fl

INM-CM4-8 r1ilp1fl grl

EC-Earth3-Veg rlilpifl

INM-CM5-0 rlilp1fl grl

IPSL-CM6A-LR rdilpifl

MRI-ESM2-0 r1i1p1fl gr

MCM-UA-1-0 rlilp1f2

32
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Trend

* Modeled in two steps
* Averaged annual cycle

* Averaged annual cycle at MUR pixels is calculated by taking the
average of monthly SSTs over the years.

* Averaged annual cycle at model pixels is calculated by
aggregating MUR averages into model pixels.

* Interpolation

* Detrend model data by subtracting annual cycle and perform
bivariate interpolation .
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* NOTES

* Bilinear interpolation requires 4 neighbors which form a
rectangular grid. Does not work here!

* Bivariate interpolation works when neighbors are irregularly
spaced. It is a spline interpolation

* Trend = annual cycle + interpolated values
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Interpolation-12/2019
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Trend (Annual cycle + Interpolated values) -
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Interpolation-12/2100

-20 -15 -10

-25

-20 -15 -10

-25

GCM Averag

T

es

L

140 145 180 185 1GO
Detrended GCM Averages
e
-
I I I I I
140 145 180 185 16O

295
2.5
2748
2B.45

0.5
0.0
-0.5

-25 -20 -15 -10

-10

-15

-20

-25

MUR Annual Cycle

e r

140 145 140 185 160
Interpolated values
T
i,
I I I I I
140 145 180 185 160

Jet Propulsion Laboratory
California Institute of Technology

295
284
275
2645

0.5
0.0
-0.5

37



Trend (Annual cycle + Interpolated values) —
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Next steps

* Find residuals by subtracting the trend from observed MUR
SSTs.

* Use laGP to model “residuals” with three input variables.
* Longitude
* Latitude
e GCM - trend (fine scale)
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Trend+Residuals — 12/2019

-10

-15

-20

=25

-10

-15

-20

-25

Jet Propulsion Laboratory
California Institute of Technology

laGP predictions

=
W ' Tan

285 = o 1.0

28 E 0.5

275 o | 0.0

o6 R o 0.8
[Con]
& -

| | | | | | | | | | | |
125 140 145 150 155 180 1325 140 145 150 165 180
Downscaled S5Ts GCM Averages
=
b — = -
- T =

295 = 29.5

285 28.5

275 o | 27.5

65 26.5
]
& -

| | | | | | | | | | | |
125 140 145 150 155 160 125 140 145 150 155 180

41



Observed SSTs , GCM averages and Downscaled
SSTs—12/2019

Jet Propulsion Laboratory
California Institute of Technology
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GCM averages and Downscaled SSTs - 12/2100
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Downscaled SSTs for 12/2019 vs 12/2100
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Temperature difference between 12/2019 and
12/2100

Jet Propulsion Laboratory
California Institute of Technology

Difference between GCM averages Histogram
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Computation

Data size: 36 coarse grids and 347,686 MUR pixels
 Predictions are made only at 89,292 MUR coral pixels.

Total number of future months: 961
* From 1/2020to 12/2100
Computation time for one month: 6 hours
Total number of coral pixels over the globe: 989,936

About a week per SSP scenario on Pleiades
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Summary

 We have shown preliminary results for coarse-gridded (1°x1°) GCM projections
 We have implemented observational model weighting

* We have implemented LaGP downscaling

 We are beginning work on a point process model to set spatially-specific thresholds

 We have plans to implement a Bayesian hierarchical model

Identifying coral refugia from observationally
weighted climate model ensembles

Peter.M.Kalmus@ijpl.nasa.gov
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Bayesian hierarchical model

Combines model weights and statistical downscaling in one integrated model
Produces monthly SST projection PDFs on 1 km grid
Solve with MCMC, implemented in R

SST denoted: Y(s,t),forseDandt=1,2,...
MUR 1 km data: Y(s;j,t) fori =1,...,ny, and t = 1,..., Teurrent
K ESMs, M grid cells: X,L-(Bj’ t)
t=1,..., Teuwrrent, Lewrrent T 1, - - - s L tuture
7=1,..., M.
1=1,.... K
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ESM output: X;(B;,t) \B ‘ / (s,t)ds + d;(Bj,t) + exi(Bj,t) (1)
J

N

relates fine scale to ESM scale bias of ESM  Gaussian noise, P xe,i
SST:

Y(s,t) =T(s,t) o +w(s,t) + ey(s,t) (2)
trend/regressicjr: term proje‘ss model TBD Gaussian noise,T2‘
Apportion N areal units at fineres: Y; = (Y (s1,%),....Y(sn. 1)), t=1,.... Tewrrent
(2) becomes: Y, =T, o +wi +ey;t =1,..., Teurrent,
similarly let: X@',t — (Xi(Bly t)a ce 7X’é(BM7 t))’

(1) becomes: Xz,t — A.Yt + dz,t + €X,@
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Process Model

Specifies distribution of spatial-temporal process, and the model bias.

Incorporates the observational model weights.

Assume w(s, t) to be Gaussian process w/ spatio-temporal covariance C(,-; 0)

Assume additive approx. Gaussian process (see e.g. Ma, Konomi, and Kang 2018)

Assume  d;; ~ NM((l — Wi )Yy O-(?l,i]:)

scaling factors (unknown)
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Parameter model (priors)

We'll first try:

{at} {7%} Gaussian prior with zero mean, multiple of the identity prior
covariance matrix with large variance

O 03( i) 7'2, and 03,&- standard conjugate inverse gamma priors



