

তণস্থা

इसरी

The NISAR Mission

NISAR Mission at a glance

- Four Level-1 Disciplines
 - Ecosystems/Hydrology, Ice Sheets, Solid Earth Dynamics, Applications
- L- & S-band 12-day orbital repeat, left-looking only mission (observations are during ascending and descending passes, so effectively two observations every 12 days)
- 240 km swath using SweepSAR
- Dominant observing mode is L-band dual-pol, 20 m multi-looked resolution. S-band collected outside of India at Cal/Val sites.
- Launch in September 2023 or January 2024
- 4.5 TB/day data downlink
- NISAR is a requirements driven mission.
- Example of a NISAR requirement (biomass):

NISAR will estimate global above ground biomass up to 100 t/ha at a 1 ha resolution, with an accuracy of 20 t/ha.

 NISAR reliable time-series observations will provide an unprecedented tool for monitoring the terrestrial environment and ecological habitats

इसरो ंडग्ण Mode-Specific Science Targets in Observation Plan

Siqueira – NISAR Ecosystems Lead

SAR coverage (JERS-1) What Global L-band looks like

- Active sensor and weather tolerance improves dependability
- For JERS-1, Every 44 days, a partial view of the Earth's surface could be made

UMassAmherst Microwave Remote Sensing Laboratory

UN ERSTY OF MASSACHUSE 773

A short tutorial for microwaves

- Primarily sensitive to vegetation/surface structure and soil moisture and freeze/thaw state
- As plants and trees grow, the balance between surface and volume scattering changes

UMassAmherst Laboratory Microwave Remote Sensing

Wavelength

C-band (5.4 GHz; Radarsat & Sentinel-1)

L-band (1.24 GHz; ALOS & NISAR)

- Green light (Landsat, MODIS & Sentinel-2)
 - 500 nm = 0.0005 cm

NISAR Concept Science Observation Overview

NISAR Characteristic:	Would Enable:
L-band (24 cm wavelength)	Low temporal decorrelation and foliage penetration
S-band (12 cm wavelength)	Sensitivity to light vegetation
SweepSAR technique with Imaging Swath > 240 km	Global data collection
Polarimetry (Single/Dual/Quad)	Surface characterization and biomass estimation
12-day exact repeat	Rapid Sampling
3 – 10 meters mode- dependent SAR resolution	Small-scale observations
3 years science operations (5 years consumables)	Time-series analysis
Pointing control < 273 arcseconds	Deformation interferometry
Orbit control < 500 meters	Deformation interferometry
> 30% observation duty cycle	Complete land/ice coverage
Left/Right pointing capability	Polar coverage, north and south

NISAR Would Uniquely Capture the Earth in Motion

Siqueira – NISAR Ecosystems Lead

L-SAR Integration is Complete

Siqueira – NISAR Ecosystems Lead

- Data are planned to be collected in track/frame coordinate system
- 173 unique tracks that comprehensively span the equator
- Within a single track/frame, data collection mode will be uniform, at the lowest bandwidth
- Higher bandwidth segments delivered separately

NISAR Development at NASA: Ecosystems

- Biomass
- Inundation
- Disturbance
 Agriculture

NISAR Biomass areas (< 100 tons/ha)

The global distribution of regions dominated by with woody biomass < 100 Mg/ha

Siqueira – NISAR Ecosystems Lead

NISAR Biomass

Siqueira – NISAR Ecosystems Lead

NISAR Overview October 2021

L-band SAR observations are established as the most reliable tool for mapping vegetation inundation

- Existing L-band SAR satellites have limited coverage and observations to accurately capture the spatial extent and temporal variations of inundation over wetlands.
- NISAR plans to acquire minimum of dual-pol data globally over all wetlands twice per 12 day orbit cycle will contribute significantly to understanding wetland hydrology and the impacts of climate variations

JERS-1 L-band SAR (HH only) data showing inundation dynamics for 1 year (Jau River, Brazil)

Rosenqvist et al, 1998.

Nominal Ecosystem Cal/Val sites Biomass/Disturbance/Wetlands/Agriculture

https://nisar.jpl.nasa.gov/files/nisar/NISAR_Science_Users_Handbook.pdf

NISAR Ecosystems/Hydrology UAVSAR AM/PM Campaign

• Flight coverage

- Mimic the NISAR diurnal observing pattern in a hydrologically dynamic environment
- 14 sites that cover Biomass, Disturbance, Wetlands, Agriculture, Soil Moisture diversity, Oil spill, Subsidence and other disciplines
- Data collected between June and October 2019 (12 nominal repeats) NISX

Time series UAVSAR data Stoneville

HH, HV, VV

NISAR Ecosystems/Hydrology UAVSAR AM/PM Campaign

Learn More about NISAR

https://nisar.jpl.nasa.gov

Ecosystem

White Papers Fire Management (PDF, 1.78 MB) Food Security (PDF, 1.01 MB) Forest Resources (PDF, 2.02 MB) Timber and Forest Disturbance (PDF, 2.7 MB) Flood Forecasting (PDF, 3.52 MB)

Workshop reports Vegetation Biomass Workshop Report (June 2016) (I

Maritime Hazards and Coastal Waters

White Papers Coastal Land Loss (PDF, 2.56 MB) Oil Spills (PDF, 3.48 MB) Ice Sheets, Glaciers, and Oceans (PDF, 1.19 MB) Marine Hazards (PDF, 1.44 MB) Sea Ice (PDF, 2.21 MB)

Workshop reports

Sea Ice and Ocean Applications Workshop Report (June 2017)

NISAR Learn More

- NISAR has a 264 page science handbook!
 - Available now as a pdf (nisar.jpl.nasa.gov/getengaged/resources/)
 - Available in hard copy at a NASA center near you!

The SAR Handbook Forest Monitoring & Biomass Estimation

- 7 Technical chapters with examples
 - Basic principles and data access
 - Forest Disturbance Monitoring
 - Forest Stand Height Estimation
 - Biomass Mapping
 - Remote Sensing of Mangroves
 - Sampling Designs for SAR-driven surveys
- Peer reviewed
- Deployed at SERVIR centers distributed worldwide
- Distributed by NASA/Marshall

• You know you have arrived when you have a youtube video

Siqueira – NISAR Ecosystems Lead

NISAR Overview October 2021

- Status
 - ATBD and Cal/Val plans completed but now being re-reviewed
 - ATBD's are all encoded into Jupyter notebooks
 - Instrument is being assembled at JPL
- UAVSAR AM/PM Campaign
- Other NASA Activities
 - Surface Deformation and Change (SDC)
 - Surface Topography and Vegetation Study
 - NISAR Community Workshop (April 19-21, 2022) Pasadena Convention Center
- Get Ready for NISAR!
 - Learn about how to use SAR data for characterizing the terrestrial environment
 - Work with Sentinel-1 time series (available through ASF)
 - Learn how to work with promoting algorithms to the computing cloud
 - Develop algorithms that utilize time-series as a signature all by itself

Questions?

Siqueira – NISAR Ecosystems Lead