

The Internet of Animals

5-year incubation study within the NASA Satellite Needs Working Group (SNWG)

BIODIVERSITY AND ECOLOGICAL CONSERVATION MEETING 27 May 2025

Autumn-Lynn Harrison

Lacey Hughey

Amy Scarpignato

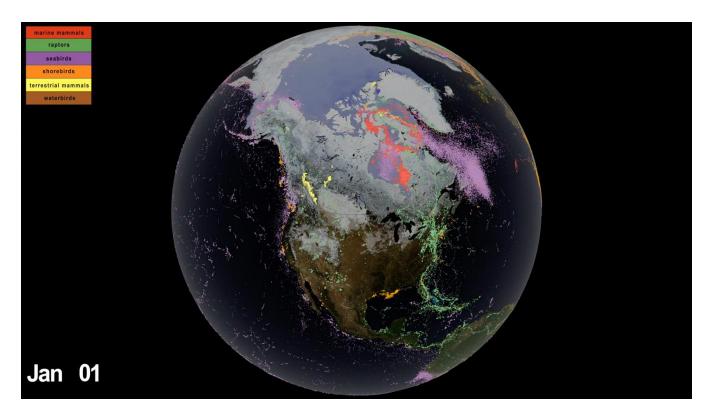
Yale

Ryan Pavlick **Antonio Ferraz Darmin Arumugam**

Srinivas Prasad

Brook Feyissa Samuel Chan Jack Bush

Understanding where, when, how animals interact with and move through/between habitats is essential to crafting successful management plans to conserve Earth's wildlife, preserve vital ecosystem services, and safeguard human well-being and livelihoods.



Internet of Animals

The Internet of Animals

- 1) Understanding User Needs for Spaceborne Animal Telemetry
- 2) Architecting the next-generation of Spaceborne Animal Telemetry to meet those needs
- 3) Integrate Animal Movement Data with NASA Remote Sensing and Earth System Modelling
- 4) Build a Federated Animal Movement Community

1) Understanding User Needs for Spaceborne Animal Telemetry

- •IoA-Yale Community Workshop [November 2022]
 - Pre-workshop webinar
 - 3-day in-person event with 36 participants
 - Participants from US Agencies (28), Academia (6), and conservation NGOs (2)
- •Community of Practice [August 2024 January 2025]
 - 10 online interviews with 22 participants/users
 - Interviewed 10 agencies

Science and Applications themes identified

Migratory routes of small animals Sensing mortality Diseases transmission Animal-borne sensors Responses of animals to human activity Managing human-animal conflict Responses of animals to human development

Science-Technology Trade-off Analysis

In NASA Jargon, a Science and Applications
Traceability matrix (SATM)

Concepte

Spaceborne Observing System requirements

1: Tag Mass (< 1gr)

2: Tag Duration (> 10 years)

3: Measurements Rate (1 x/min)

4: Data Latency (1 min)

5: Spatial Accuracy (3 meters)

Misson Concept study (pre-phase A):

defining potential mission architectures, identifying the necessary technologies, and evaluating the cost-benefit trade-offs. Present a few viable concepts associated with feasibility scores to stakeholders for further consideration and funding.

•Tag trade-space analyses

Prototype Miniaturized Tags

New Satellite Architectures

Misson Concept study (pre-phase A):

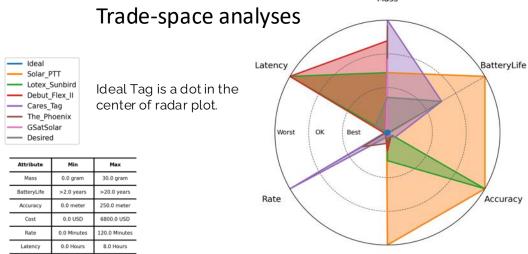
defining potential mission architectures, identifying the necessary technologies, and evaluating the cost-benefit trade-offs. Present a few viable concepts to stakeholders for further consideration and funding.

Tag Features

Prototype Miniaturized Tags

New Satellite Architectures

1) Catalog animal tags, detailing their technical specifications and capabilities (includes 100+ tags)


ID	Tag Name (System)	Satellite Infrastructure	Status	Manufacturer	Tag Mass	Battery Life	Measurement Frequency (Rate)	Data Latency	Position Accuracy (Horizontal & Vertical)	Cost	Auxiliary Sensors	Communication Approach	Communication Protocol	References
1	SOLAR PTT	Argos	Commercial	Microwave Telemetry	2 g, 5 g, 9.5 g, 12 g, 18 g, 35 g, 50 g	(solar-powered	duty cycle; transmits ~every	(Argos uplink on	~250 m (Argos Doppler, best-case); up to ~1500 m error in poor conditions	~\$5,000 (5 g) - ~\$6,800 (2 g) per tag	voltage sensors;	UHF Argos uplink (~401 MHz) one-way to NOAA polar satellites	Argos DDS protocol	Solar PTT
2	SOLAR Argos GPS PTT	Argos	Commercial	Microwave Telemetry	17 g, 22 g, 30 g, 45 g, 50 g, 70 g	up to 3 years	Programmable duty cycle; transmits ~every 60 s when active	Transmit to argos every 3 days	GPS location within +/- 18m	\$3650 - \$4200	GPS, temperature, battery voltage, activity	Argos network uplink	Argos DDS protocol	Solar Argos GPS PTT
3	ETA-2920	Argos	Commercial	Telonics	26 g	75–200 days (battery, duty-cycle dependent)	Transmits 4–12 h/day (user-scheduled duty cycle)	Near real-time (data with each satellite pass)	~150–500 m (Argos Doppler location)	N/A	Mortality, activity, temp, low-voltage sensors	UHF Argos uplink (401.65 MHz) to NOAA satellites (Doppler tracking)	Argos DDS protocol	ETA-2920
								Near real-time				UHF Argos uplink		

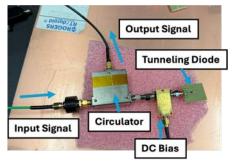
The catalog is a living document intended for consultation, feedback, and practical use by the community

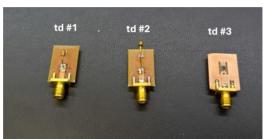
2) Identify gaps in tag performance to highlight areas for technological development

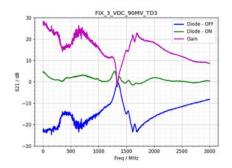
Cost

Misson Concept study (pre-phase A):

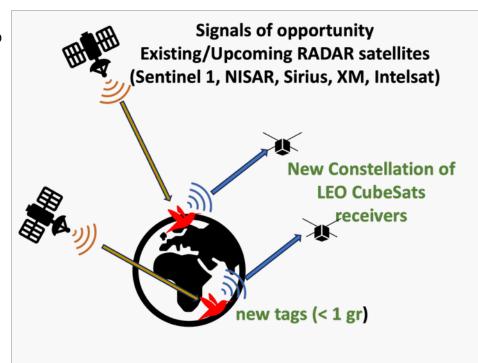
defining potential mission architectures, identifying the necessary technologies, and evaluating the cost-benefit trade-offs. Present a few viable concepts to stakeholders for further consideration and funding.


Review of Tag Features


Prototype Miniaturized Tags

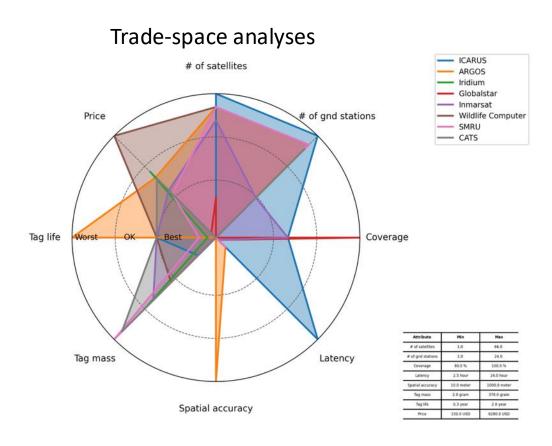

New Satellite Architectures

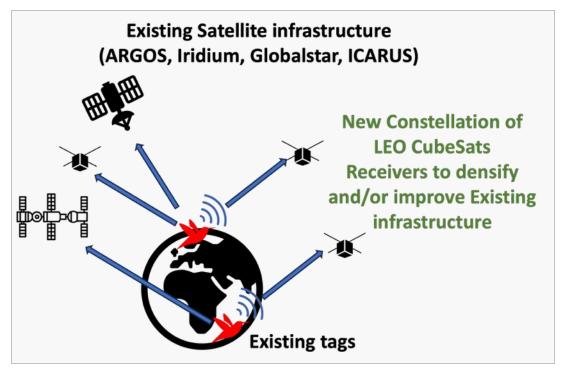
- Exploring <u>signals of opportunity</u> to develop **< 1 gram** tags
- Prototyping passive or semi-passive RFID tags reflecting existing RADAR signals to a constellation of CubeSats receivers


Status: Proof-of-concept in controlled setting (lab) finalized, with promising results

Upcoming this summer, System-level feasibility: testing tag reflectivity from real-world sources (Sirius, XM, Sentinel-1, NISAR) towards outdoors antennas scattered around JPL.

Misson Concept study (pre-phase A):


defining potential mission architectures, identifying the necessary technologies, and evaluating the cost-benefit trade-offs Present a few viable concepts to stakeholders for further consideration and funding.


Review of Tag Features

Prototype Miniaturized Tags

New Satellite Architectures

- Compare options for different Observing Systems architectures based on factors like cost, performance and risk.

Example: Design improved constellations of CubeSats with multi-system antennas (e.g., ARGOS, ICARUS, Iridium) to enhance current tag-satellite connectivity, coverage, latency, and cost-efficiency.

3) Integrate Animal Movement Data with NASA Remote Sensing and Earth System Modelling

•ARSET Training

• RSAM: Remote Sensing for Animal Movement Animal-borne sensors

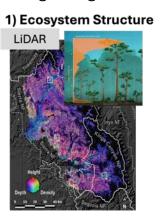
Registrants: ~2000 in $\mathbf{1}^{\text{st}}$ week

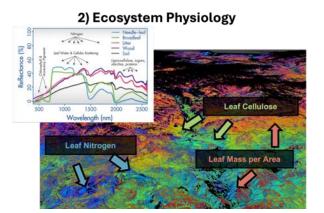
live participants 900+

Part 1, May 20th Part 2, May 22th

Main Goals / Learning Objectives:

- Identify types of animal tracking tags and sensors.
- Recognize types of remote sensing data and products.
- Integrate animal movement data with remote sensing for analysis

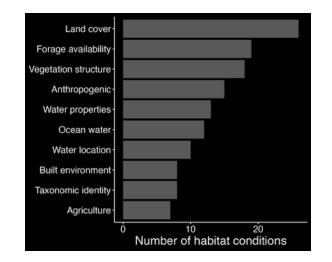

3) Integrate Animal Movement Data with NASA Remote Sensing and Earth System Modelling


•ARSET Training


 RSAM: Remote Sensing for Animal Movement Animal-borne sensors

Problem: Animal movement data has been predominantly integrated with NDVI and Land Cover Maps

Goal: Stimulate the integrating of advanced remote sensing of habitat structure, physiology and function



(LIDAR, RADAR, Thermal, Spectroscopy, SIF)

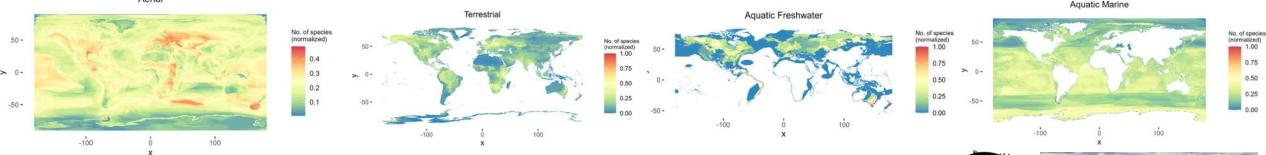
Two step approach:

- a) Requirements. Wish list of habitat characteristics from Movement Ecologists (50+ expert interviews)
- b) Gap Analysis. What habitat requirements can be met by
- a) current remote sensing sensors
- b) upcoming remote sensing sensors
- c) require the design of new remote-sensing sensors

Deliverable: Journal paper submitted by October 2025

3) Integrate Animal Movement Data with NASA Remote Sensing and Earth System Modelling

•ARSET Training


• RSAM: Remote Sensing for Animal Movement Animal-borne sensors

Problem: Significant Observational Gaps (e.g., temperature, salinity, CO2, air pressure) hinder our understanding of the Earth System

Existing infrastructure (weather stations, balloons, buoys) is sparse and biased toward populated areas.

Potential: Tracked animals have global coverage and inhabit hard-to-reach areas: deep oceans, polar regions, high altitudes, and ice-covered

Real world Applications: Marine animals: feed salinity and temperature profiles into the Global Ocean Observing System (GOOS).

We want to expand these concepts to a broader terrestrial-aerial-water framework to inform NASA Earth System Understanding & Modelling

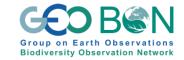
4) Build a Federated Animal Movement Community

- MoveBON: Movement Biodiversity Observation Network
- •3-day in-person event with **110 participants**
- •Participants from Agencies (43), Academia (27), conservation NGOs (25)
- •Participants from N. America (65), S. America (1), Europe (13), Africa (3) and Asia (1)

Advance science-policy impact of movement data

- develop biodiversity indicator
- support national use cases demonstrating the value of integrating animal movement into policy.

Establish a thematic BON on animal movement


- formalize a dedicated BON focused on tracking and interpreting animal movement.

Being prepared

- MoveBon Concept Journal Paper
- Proposal to become an official BON

