

BIODIVERSITY OCEAN DATA TRANSFORMATION: TECHNOLOGY DRIVERS AND NEEDS

MBON & MTS:

TECHNOLOGY INNOVATION TO ADVANCE MARINE BIODIVERSITY SCIENCE AND STEWARDSHIP

MAY 30, 2025

THEME

Why?

Why not?

Re-imagining Ocean Observing

What if?

What then?

Challenger Expedition 1872 - 1875

Origin of Modern Oceanography

Collected data on:

- Temperatures
- Ocean chemistry
- Currents
- Marine life
- Geology of the sea floor

Research vesse

Challenger's Value Proposition

Area	Value Delivered
Science	Oceanography became a structured, data-driven discipline.
Policy	Oceans gained geopolitical and environmental importance.
Technology	New tools and techniques proved ocean science was feasible.
Public Good	Data and discoveries were shared globally, shaping future research.

Today's Ocean Observing Value Proposition:

The value of ocean observing today is **strategic**, **economic**, **environmental**, **and humanitarian** –

providing essential data and insights that underpin global stability, sustainability, and prosperity.

CLIMATE AND WEATHER PREDICTION

Supports seasonal forecasts, extreme weather prediction and climate modeling

MARINE RESOURCE MANAGEMENT

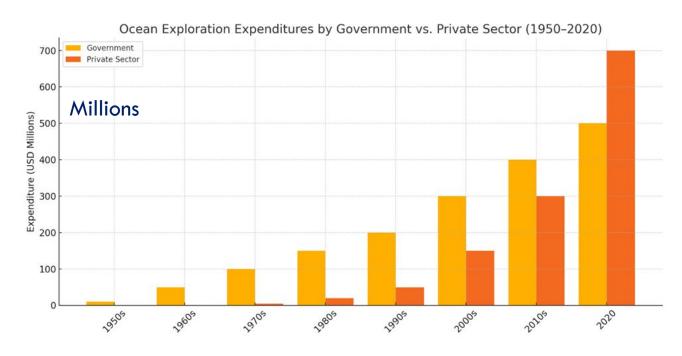
Informs sustainable fishing and protection of habitats

OCEAN ECONOMY

Reduces risk and increases efficiency across sectors

EARLY WARNING & DISASTER RISK REDUCTION

Saves lives and reduces economic losses

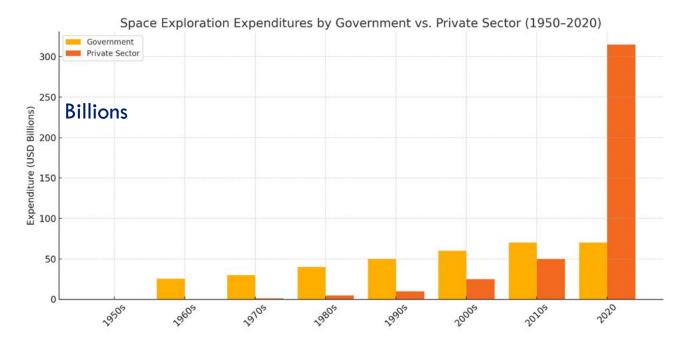


Ocean Science The role of the Private Sector

Sustained and strategic private investment in oceanographic exploration really took off in the last 15 years,

shaped by technology and the emerging value of ocean data in global markets.

Era	Private Sector Role
Pre-1990s	Supportive but niche (mainly oil & telecoms).
1990s	Quiet growth; start of tech partnerships.
2000s	Growing curiosity-driven & market-aligned investment.
2010s-present	Strategic, scaled investment across sectors—exploration, tech, ESG, and data.

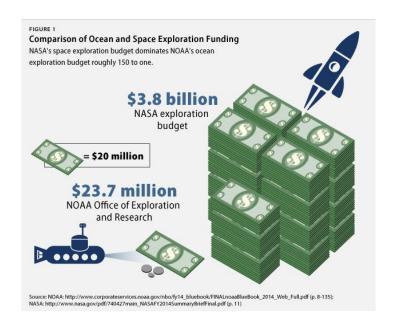

Space Science

The role of the Private Sector

Exponential growth since 2015

What Drove the Takeoff?

- Public-private partnerships (shift from cost-plus to performance-based contracts).
- Declining launch costs (market disruption).
- Moore's Law for satellites (smaller, cheaper, faster to deploy).
- · Investor appetite for frontier tech


Era	Private Sector Role
Pre-2000	Private sector = contractors to governments.
2000–2008	Visionaries plant seeds, early resistance.
2008–2015	Public-private collaboration fuels first major successes.
2015–present	Exponential growth; private sector becomes dominant force in innovation, launch, and infrastructure.

Ocean Science vs. Space Science The role of the Private Sector

- **Space exploration** has consistently received far higher investment.
- Ocean exploration shows modest government investment and a steep rise in private funding in recent decades.

• **By 2020**, private sector investment in both domains significantly outpaces government contributions in relative growth.

LEANING INTO THE NARRATIVE OF IMAGINATION

WHAT DOES THE FUTURE LOOK LIKE?

WHAT DOES A THRIVING OCEAN ECOSYSTEM AND ECONOMY LOOK LIKE IN THE FUTURE?

Building Awareness

Breaking down silos

Imagination.

As climate risks intensify and global markets increasingly depend on marine intelligence, scalable, cost-effective ocean data is

no longer just a scientific challenge—it's a business imperative.

Where is the UNICORN?

Imagine what might be, once ocean data is solved.

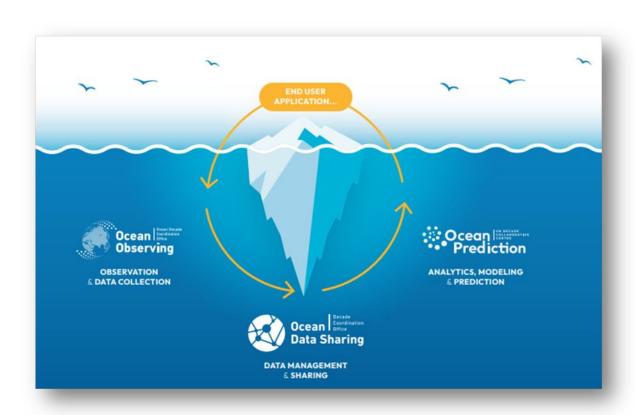
Example: The Geospatial sector

Building Awareness

Breaking down silos

Imagination.

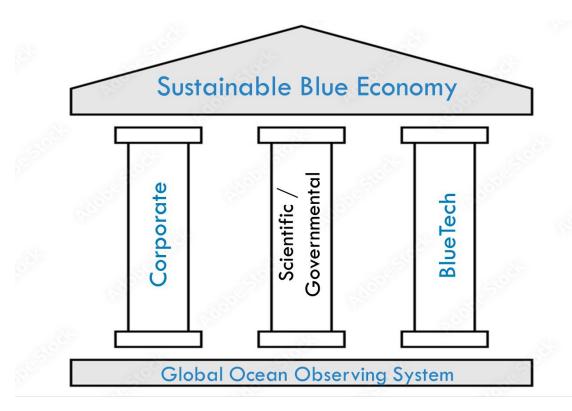
As climate risks intensify and global markets increasingly depend on marine intelligence, scalable, cost-effective ocean data is


no longer just a scientific challenge—it's a business imperative.

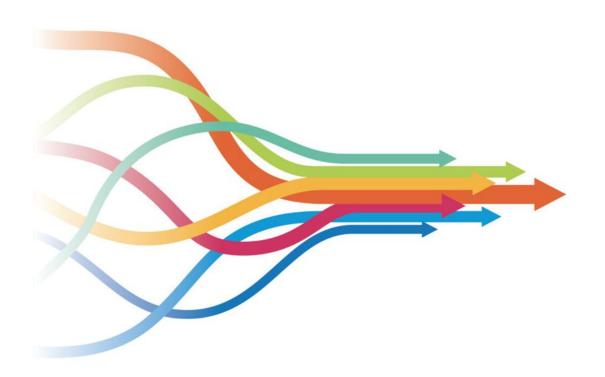
Ocean

OCEAN DECADE
DIGITAL ECOSYSTEM

Ocean Decade Challenge 7


Sustainably expand the Global Ocean Observing System

Ocean Decade Challenge 8
Create a digital representation of the


Supporting Ocean Decade Challenge 7:

Sustainably expand the Global Ocean Observing System

Supporting Ocean Decade Challenge 7:

Sustainably expand the Global Ocean Observing System

...in Marine Biodiversity

 Ad hoc community consists of 27 members

 Agreement to focus on strengthening and expanding the Marine Biodiversity Digital Data Ecosystem

THE TEAM

Phase 1

Understand the Ecosystem of Potential Contributors

- a) Map Potential Contributor Communities
- b) Conduct Needs and Gap Analysis

Phase 2

Co-develop Targeted Value Propositions and Support Pathways

- a) Co-create Contributor
 Personas or Use Cases
 with matching Value
 Propositions
- b) Map, Adapt, and Develop Support Materials

Phase 3

Support the Transition for 'Local Data Holder' to 'Global OBIS Contributor'

- a) Launch a 'Path to Contribution' Program
- b) Facilitate Peer Learning and Recognition

Phase 4

Activate Regional & Global Campaigns

- · Identify local OBIS ambassadors
- Use cases relevant to the region
- · Live support for data preparation
- Matchmaking with regional projects or initiatives

Phase 5

Communicate

- Contributor & Community stories
- Map conversion success rates (holders → contributors)
- Discuss how to blow-up remaining blockers

THE FUTURE OF OCEAN OBSERVING