College of Science Chester F. Carlson Center for Imaging Science

BioSCape **RadSCape**: radiative transfer simulation and validation of the dynamic structural and spectral properties of the vegetation of the Cape

Manisha Das Chaity, Ramesh Bhatta, Jasper Slingsby, Glenn Moncrieff, Rob Chancia, Jan van Aardt

RIT High Level Project Overview

College of Science Chester F. Carlson Center for Imaging Science

Objectives

- Investigate the *spectral and spatial dependencies* in this complex ecosystem, using simulation, validated with real AVIRIS | LVIS data
- Evaluate our ability to *assess post-fire biodiversity recovery* using real data and simulated approaches
- Identify *next-gen systems* for assessment of such low-stature, biodiverse systems

College of Science Chester F. Carlson Center for Imaging Science

(*left*) Grootbos Private Reserve, South Africa; (*right*) one of six study sites (burn-year = 2019). The red square in the figure shows the location of reference plot (5m x 5m)

RIT Our approach – i) drone data (4-band & SfM)

College of Science Chester F. Carlson Center for Imaging Science

Initially used high-res (2.5cm) 4-band drone data to **assess spectral & structural differences between burn years**

RIT Results - spectral feature selection & ML

College of Science Chester F. Carlson Center for Imaging Science

t-SNE plot used to visualize highdimensional features of fynbos images by reducing it to a low-dimensional feature space to see different burned area clusters

- Spectral: Mean of NIR, CV-of-RE, mean-of-CVI, CV-of-LCI, CV-of-Ratio1
- Texture: Mean of dissimilarity Red band, mean of homogeneity NIR band

RIT Results – spectral alpha-diversity mapping

College of Science Chester F. Carlson Center for Imaging Science

Ridge Plot of Estimated Alpha Diversity by Year

- Alpha-diversity tends to decrease in old Fynbos (2006, 2016) vs. young fynbos sites (2019,2020)
 - Post-fire succession is characterized by a gradual reduction in species richness, indicating a decline in biodiversity as the ecosystem ages

College of Science Chester F. Carlson Center for Imaging Science

Canopy Height

Top Rugosity

Surface Point Density

College of Science Chester F. Carlson Center for Imaging Science

Burn year prediction results

Classifiers	Burn Year Prediction on Test Data (429 samples) [F1-Scores] 2006 2016 2017 2019 2020 2022							_	Overall Accuracy
Random Forest	1.00	0.85	0.60		0.78	0.78	0.83		85%
1D CNN	1.00	0.82	0.54		0.74	0.75	0.81		83%
SVM	1.00	0.80	0.56		0.76	0.80	0.80		83%
KNN	1.00	0.80	0.56		0.78	0.77	0.74		82%
Naïve Bayes	1.00	0.76	0.50		0.72	0.79	0.78		81%
Des-Tree	1.00	0.75	0.44		0.72	0.73	0.72		80%

Easiest to predict

Difficult to predict

- We **predicted the burn year** of unseen subplots by training few classifiers, using "*burn year*" as label and four structural metrics as features
- **SMOTE** (Synthetic Minority Oversampling Technique) was used to generate samples for the minority class during training
- Most of the **confusion in classification** was found between burn **year 2016 vs. 2017** and **year 2019 vs. 2020**

College of Science Chester F. Carlson Center for Imaging Science

Question: "To what extent do the subplots differ structurally from the reference subplot?"

RIT Fynbos DIRSIG Scene Update - 3D Modeled Species

College of Science Chester F. Carlson Center for Imaging Science

(created by 3D artist)

RIT Spectral Property Attribution

- Field measurements of each species used to fit *PROSPECT* parameters
- *PROSPECT* output includes spectral reflectance and transmittance
- Each species has multiple data files (random instance selection)

RIT Fynbos DIRSIG Scene Update – scene instantiation

RIT Spatial Patterns from Drone Imagery

- Classification algorithm used to extract general spatial patterns of plant species
- Grayscale image used as a density map

RIT Blue Noise

- Poisson Disc Sampling algorithm used to generate blue noise
- Used to generate natural spatial patterns

T Additional Field Data

College of Science Chester F. Carlson Center for Imaging Science

Data collected in each burn plot was used when instancing each species

- Mean diameter
- Percent cover

Unique instances

- Random rotations
- Random scaling

Script can generate unique scenes

- Any size (computational limitations)
- "Inspired by" each burn plot

RIT DIRSIG Scene: Ground Abundance Comparison

College of Science Chester F. Carlson Center for Imaging Science

Drone Image

Ground Abundance (pixel ratio)

RIT DIRSIG Scene: Varying Extent

College of Science Chester F. Carlson Center for Imaging Science

Examples of varying scene extent for 2019 burn plot

10m x 10m

20m x 20m

30m x 30m

- Validation with real AVIRIS & LVIS data
- Evaluation of spectral-structural dependencies
- Assessing that "ideal" sensing system for such highly diverse, complex systems

