Biodiversity across Scales:

Mapping taxonomic, phylogenetic, and functional diversity with eDNA, field surveys, and remote sensing

PIs: Matthew Rossi (CU Boulder), Rachel Meyer (UC Santa Cruz), Natasha Stavros (BAE Systems) Students: Meghan Hayden (CU Boulder), Madeline Slimp (UC Santa Cruz), Jacob Nesslage (UC Merced)

Motivation

How do eDNA, field, and remote sensing observations of biodiversity relate across space and time?

Image credit to M. Newcomer and D. Swantek (LBNL) as part of collaborations for similar work in the Russian River (CA) watershed.

Question	Hypothesis	Significance
RELATION: How are phylogenetic, taxonomic, and functional diversity related to each other?	(H1): Phylogenetic, taxonomic, and functional diversity are directly related to each other along the Berg and Eerste River systems.	Map biodiversity consistently, globally, and at regular intervals using remote sensing
SPACE: How does the hydrologic structure of watersheds organize phylogenetic, taxonomic, and functional diversity spatially?	(H2) Spatial dynamics, flow pathways, and functional process zones organize phylogenetic, taxonomic, and functional diversity spatially such that measures of biodiversity are scale dependent	As watersheds change and/or are modified, spatial patterns in biodiversity are also expected to change.
TIME: How do hydroclimatic processes influence the temporal signal of phylogenetic, taxonomic, and functional diversity ?	(H3) Stochastic hydrology (seasonality, floods) influence the temporal signal of phylogenetic, taxonomic, and functional diversity.	Constrain when and how frequently we need measurements of biodiversity using eDNA and remote sensing

Approach

Nested watershed approach towards sampling.

- Unmix tributary contributions
- Sample across environmental gradients
- Repeat sampling (two field seasons)

Approach

Nested watershed approach towards sampling.

- Unmix tributary contributions
- Sample across environmental gradients

Berg 4,216 km²

Field Work (2023)

eDNA processing

Each sampling site:

- Sediment @ 4 locations (triplicate)
- Soil @ 1 location (triplicate)
- Water @ some locations
- X2 field seasons

eDNA processing

Each sampling site:

- Sediment @ 4 locations (triplicate)
- Soil @ 1 location (triplicate)
- Water @ some locations
- X2 field seasons

Year 2 focus:

- Processing samples from both field seasons
- First results from metabarcoding coming this summer!
- Metabarcoding and metagenomics records 100s-1000s of species per sample
- While libraries are vast, challenge remains that large inventories are needed

Remote sensing analysis

	Wavelengths	Spectral resolution	Spatial resolution	Temporal resolution
AVIRIS-NG	380 - 2510 nm	5 nm	0.3-4 m approx.	Single pass
NEON AOP	380 - 2500 nm	10 nm	1-3 m approx.	Single pass

Using NEON to build workflow:

- Quantify how **functional richness** and **functional divergence** vary as a function of scale

Remote sensing analysis

	Wavelengths	Spectral resolution	Spatial resolution	Temporal resolution
AVIRIS-NG	380 - 2510 nm	5 nm	0.3-4 m approx.	Single pass
NEON AOP	380 - 2500 nm	10 nm	1-3 m approx.	Single pass

Using NEON to build workflow:

- Quantify how **functional richness** and **functional divergence** vary as a function of scale

Remote sensing analysis

	Wavelengths	Spectral resolution	Spatial resolution	Temporal resolution
AVIRIS-NG	380 - 2510 nm	5 nm	0.3-4 m approx.	Single pass
NEON AOP	380 - 2500 nm	10 nm	1-3 m approx.	Single pass

Schneider et al. (2017) Nature

Site selection:

- 16 sites with order 6-12 plots per site
- Inter-plot variations in functional richness are high
- Need for **way to compare** across plots and sites

Area (m2)

Site selection:

- 16 sites with order 6-12 plots per site
- Inter-plot variations in functional richness are high

- Need for **way to compare** across plots and sites

Scaling relationships:

- Sublinear scaling is robust even though it varies a lot

- Median value of z across all plots and sites is ~0.5

 $FuncRich = (c_n)Area^{z_{ref}}$

Normalized Coefficient

Functional richness decently correlated with **alpha diversity** for herbaceous and scrub classes (not so much for forested sites)

Functional richness decently correlated with **alpha diversity** for herbaceous and scrub classes (not so much for forest sites)

Normalized scaling facilitates **testing** of correlations with driving variables (e.g., climate, landcover, topography)

Functional richness decently correlated with **alpha diversity** for herbaceous and scrub classes (not so much for forest sites)

Now we are ready to do this for the **Berg** and **Eerste watersheds** using the AVIRIS-NG data

Normalized scaling facilitates **testing** of correlations with driving variables (e.g., climate, landcover, topography)

Project Status

Year 1	Year 2	Year 3
Field surveys/collections #1 Make new contacts with South African partners	Field surveys/collections #2 Maintain and make new contacts with South African partners	Manuscript #3: Berge / Eerste River eDNA Work with South African partners to co-produce useful artifacts
Build inventory of expected genera at sampling sites and revise field protocols Begin to develop remote sensing	eDNA processing (DNA extraction and metabar coding) Remote sensing workflow finalized (begin building package)	Remote sensing package release Develop new ideas for using these data when interrogating
Manuscript #1: eDNA analysis of relate work in the Santa Monica Mountains (in revision now)	Manuscript #2: Functional richness across NEON sites (in prep now) Collaborator Update / Meet-up at end of month	Manuscript #4: Berg / Eerste spatio-temporal analysis of functional traits

Much thanks to our sponsors and collaborators

