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Using field data to gain insights for future trait
modeling

Question 1: How well do spectra
collected in the Cape Floristic
Region predict traits from existing
models?

Question 2: How do spectra vary
with plant traits and environment?



Using field data to gain insights for future trait

modeling
Links to the broader questions

Question 1: How well do spectra Questions of generality of
collected in the Cape Floristic algorithms within/among
Region predict traits from existing biomes

models?

Question 2: How do spectra vary Understand patterns of
with plant traits and environment? foliar trait variation in the

BioSCape



Why leaf-level spectral libraries

* |t’'s the foundation for we
train models to predict
traits in AVIRIS imagery

* It gives us insight on how |
spectra vary without the /
influence of canopy g o
structure and substrate
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and dry spectral libraries

library from BioSCape
collected in 2023

* 7885 measurements
 ~600 spp. from 60+ plant families

* Measured with Spectral Evolution PSR+ using
leaf clip and custom contact probe

* Dry spectral library from Dimensions of
Biodiversity (2010-2015)

* 1915 measurements
* 676 spp. from 72 plant families
 Measured with ASD FieldSpec




and dry spectral libraries

* Fresh spectral library from BioSCape
collected in 2023
« 7885 measurements
e ~600 spp. from 60+ plant families

* Measured with Spectral Evolution PSR+ using
leaf clip and custom contact probe

* Dry spectral library from Dimensions of
Biodiversity (2010-2015)
* 1915 measurements
* 676 spp. from 72 plant families

* Measured with ASD FieldSpec. A big thank you
to the Slingsby lab!




Vector-normalized Reflectance

Dry vs. fresh spectra (Protea repens)
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Using field data to gain insights for future trait
modeling

Question 1: How well do spectra
collected in the Cape Floristic
Region predict traits from existing
models?

Approach:

Dry spectra Partial least
(Dimensions)\ squares regression _» Predicted traits

coefficients (North
American)



Using field data to gain insights for future trait
modeling

Question 1: How well do spectra i
collected in the Cape Floristic -
Region predict traits from existing §
models?
Predicted
Approach:
Dry spectra Partial least

(Dimensions)\ squares regression __w» Predicted traits

coefficients (North
American)
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Family
- ASTERACEAE

Dry modelresults | - ERICACEAE
; . = POACEAE
(Dimensions) = PROTEACEAE
RESTIONACEAE
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Dry model results
(Dimensions)

Leaf % Carbon

Again, reasonable
performance for
extrapolated data.
Similar studies tend to
find R%2values inthe .7 to
.8 range.
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Dry model
results
(Dimensions)

Leaf % Carbon

Lowest performance
associated with
graminoid families
(Restionaceae and
Poaceae)
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reSu ltS ’ Dataset
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Still processing trait
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| eaf-level trait model takeaways

* Takeaway 1: Based on dry results, models are influenced by what
families and growth forms they are predicting

* Need to train models on endemic CFR lineages and certain growth forms,
e.g. graminoids.

 Takeaway 2: Some traits like water content may be more
generalizable than others



Using field data to gain insights for future trait
modeling

Question 2: How do spectra vary
with plant traits and environment?



Using field data to gain insights for future trait

modeling
PCA of spectral library

Question 2: How do spectra vary

with plant traits and environment? /

Predicted traits
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Principal components analysis for
fresh spectra
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variation
(BioSCape)

The two large axes
likely explained by:

Water conservation
traits (x-axis)

Nutrient availability (y-
axis)
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variation
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Weak
correlations
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Weak
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variation takeaways

* Takeaway 1: A large portion of spectral variation is likely due to
trade-offs in structural investments and nutrient availability.

* Note that the lower axes of variation are still important

* Takeaway 2: Based on leaf level results, we can make some
hypotheses for trends we may observes in trait maps:

* Weak associations with predicted traits and environment. Variation in soil
will likely be stronger than climatic variables



Next directions

* Measuring traits and o
dry spectroscopy for
BioSCape

» Processing AVIRIS- %
NG imagery 5 & _F 7 7

* Trait map production

Trait maps






