TraitsCape: Understanding the role
of microrefugia in buffering fynbos
from global change
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Refugia

When are fynbos
communities likely to be

resilient |to change?

Will physical microrefugia
maintain existing fynbos
communities?

Will{shifting abundance|or
immigration provide
resilience in ecosystem
function despite species
composition change?
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Trait Driver Theory

A general theory for trait-based ecology
that can scale from individuals, to
communities, and to ecosystems
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Trait Driver Theory

Moment of
Community Trait
Distribution, C(2)

Predictions for Rate of
Community Response to a
Changing Environment

Predicted Ecosystem Effects

I. Mean

(a)

(b)

Will shift if environmental
change alters value of z,
and time scales are not too
rapid and oscillatory

Lags zopc by an amount that
depends on rate of change in
environment, rates of
immigration, and the forces
that influence the variance

(i) Will shift productivity
according to form of
growth equation, f

II. Variance

(b)

©

Decreases with strong abiotic
filtering

Decreases due to
competitive exclusion by
individuals with trait z,p,
Can increase with increased
immigration, competitive
niche displacement, and/or
temporal variation in Zop,

(i) Increased variance
implies lower
productivity for fixed
or stable environment

ii) Increased variance
accelerates community
response to
environmental
changes

Trait distribution
moments scale with
ecosystem function!

III. Skewness

()

(b)

Skewness values > or <

0 can reflect a lag between Z
and 2, and a rapidly
changing community due to
an environmental driver or
extreme limit to a trait value
Increases in skewness can
indicate a response to rapid
environmental changes or
the importance of rare
species advantages in local
coexistence

(i) Depending upon
kurtosis and variance
value, productivity
should be reduced
compared with a
community with
similar variance but
skewness equal to zero

Increased variance
implies lower
productivity for fixed
or stable environment
Increased variance
accelerates community
response to
environmental
changes

(1)

(i

Enquist et al. Adv. Ecol. Research 2015




Trait Driver Theory
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and 2, and a rapidly
changing community due to
an environmental driver or
extreme limit to a trait value
Increases in skewness can
indicate a response to rapid
environmental changes or
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species advantages in local
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(i) Depending upon

kurtosis and variance
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compared with a
community with
similar variance but
skewness equal to zero

productivity
should be reduced
compared with a
community with
similar variance but
skewness equal to zero

Enquist et al. Adv. Ecol. Research 2015




How do we test a theory?

In(/ M-34)

y=-069x+C

endotherms éC 21.85)
ﬁsh C=20.
A am sbaans(C 20 51)

+ re tes(c
X inverts 197 )
o umoells C 19 )
v plants ( 81)
36 38 40 42

Temperature (1/kT)

Brown et al 2007 Ecology



Ingredients : The fourth corner problem

Species Environmental
traits

temperoture overfayed with locations of
historical community survey observations that

) we will resurvey (Section 2.c), Plots have been
chosen to span regional aridity gradients
== = Baviaanskloof
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From Brown et al 2014 MEE



Model development (why this works)

BACKGROUND:

1. Maximum entropy models are used to estimate density functions, i.e., a community trait distribution (Shipley
et al 2006, Science)

2. Maxent models can be inverted to predict the relative abundance of each species in a community based on
their traits and the community mean traits (Merow et al. 2011, Ecology)

3. Maxent models applied to species distributions are constrained by the moments (mean, variance) of the niche
for a species by including linear and quadratic features, respectively (Phillips and Dudik, 2008, Ecography)

4. Community Aggregated Trait models showed unified maximum entropy models of Shipley et al 2006 and
Fourth Corner Problems (Legendre et al 1997 Ecology, Schleip et al 2018 MEE) for trait-environment
relationship in the GLM-based framework (Warton et al 2013 MEE) enabling all the tools of regression to
apply to entropy models. These focused just on community MEAN traits.

NEW:

1. Extend CATs to include other central moments using additional polynomial terms

2. Variable selection corresponds to testing for the significance of mechanism predicted by TDT

3. LASSO regression manages the slew of candidate variables. Adaptive LASSO distills further. This allows big data
and complex models to be interpretable.

4. Combinations of significant variables help isolate which TDT mechanisms operate.



The model:
Poisson Point Process

Trait Driver Theory

log(relative abundance) ~ trait + env + trait * env + trait*2 + trait A3 + trait 4 +
env* trait"2 + env* trait A3 +env * trait 24

+trait + env + trait * env + trait"2 + trait A3 + trait "4 + env* trait"2 + env* trait A3 +env * trait M4
+trait + env + trait * env + trait"2 + trait A3 + trait "4 + env* trait"2 + env* trait A3 +env * trait M4
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+trait + env + trait * env + trait"2 + trait A3 + trait "4 + env* trait"2 + env* trait A3 +env * trait M4
+trait + env + trait * env + trait"2 + trait A3 + trait "4 + env* trait"2 + env* trait A3 +env * trait M4



The model:
Poisson Point Process fit with LASSO regression

— Fewer pa rameters
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The Result (at this point, a prediction)

Coefficient Interpretation

Trait*2 * env +5 diverse communities have
higher productivity in variable
environments AND
Lower productivity in stable
environments

Trait”3 -5 lower productivity with higher
skew due to community lagging
env

TBD



Starting tests... California grasslands
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Refugia
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Thanks!

Pep Serra-Diaz
Mark Urban

Xinyi Shen

Pep Serra-Diaz
Jasper Slingsby
Wendy Foden
Nicola van Wilgen
Brian Enquist
Manos Anagnhostou

Adam Wilson

Questions?




Bonus slides below



Dynamics of community trait moments

Total biomass dCr/dt = Cr[f(Z) + fP2) My + fOZ) M+ ..] + 1 (6)
Trait mean 0600‘ dz/dt = fN(2) My + fP(2)Ms + ... + (I/Cr) (21 — 2) (7)
Trait Variance  dV/dt = dMs/dt = fV(2)Ms + fP(2)(My — M3) + ... + (I/Cr) (VI = V) + (1 — 2)?] (8)

Trait Skew dS/dt = dMs/dt = 3f1(2)(My+ SV/Br) + (I/Cr)]..] (9)

f describes the per capita growth rate
M describes moments of the trait distribution

Turelli and Barton 1991
Norberg et al. 2001
Savage et al. 2007
Enquist et. al 2015



Trait Moment Dynamics Growth function

Total biomass  + fP2)My + fO ()M + ]+ 1 (6)

Trait mean \+ f@(Z)M; + ... + (I/Cr) (21 — 2) (7)

Trait Variance 2)(My = M3) + ... + (I/Cr)[(VI = V) + (21 - 2)°] (8)

Trait Skew 3f1(2)(My + SV/Br) + (I/Cr)|.] (9)

Can parameterize
with *high
resolution™* remote
sensing pixels




Trait Moment Dynamics

Total biomass

Trait mean

Trait Variance

Trait Skew

Can parameterize
with *high
resolution* remote
sensing pixels

Growth function

— MODIS

|

—— Predicted

0 10
year

20

And a biomass growth as model
(Wilson et al. 2010)




Adding more trait
structure....

recruit trait : rq(q'|q, env) ~ F(f(g, env), €p2)

growth : g(z'|x,q, env) ~ .7-'(,}”(.77,q,em)),rry2

<
&\4
Qo

)
survival : s(x,q,env) = f(x,q, env)
recruits : r(x,q,env) = f(x,q,env)

)

recruit size : (2’|, q,env) ~ F(f(x,q,env), o2

ni+1(z’,q') = / / K(2',q |z, q,env) ny(z,q) dz dg+ I(z', ¢, env)
Q. Jo,
K(',q|z,q,env) = P(Z, ¢ |z, q,env) + F(2', ¢ |z, q, env)

P(2', ¢ |z, q,env) = s() g() t(); F(2',q |z, q,env) = () r2() 74()

I(2', ¢'|env) ~ F(metacommunity(z, q), env)

N(z,q) = Z ni(z,t)

K*(7',q|x,q,env) = Z K;(z,t,env)
i

biomass:/ / N(z,q) dz dq
Q. Jo,

NPP = )\1/ N(z,q) dx dq
a. Ja,

time to recovery = t, = log(z)/log(A1/|\2]|)

J
trait life expectancy =7 = Z(I — P)i—’j1

J

Traits ~ Environment

Individual
Demography ~ Traits

Population Dynamics ~
Individual Demography

Community Dynamics ~
Population Dynamics

Ecosystem Function ~
Community Dynamics



Immigration is needed for resilience

Scenario 1:
Local Adaptation,
No dispersal

Scenario 2:
Immigration of
traits better
suited for new
climate
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Recovering species composition from trait distributions
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Products

Trait Means
(Leaf Mass Area)
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(Possibly only along flight paths, but we’ll try using environmental covariates to extend to the CFR)



Recovering species composition from trait distributions
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A step further with Integral Projection Models

0.15

0.10

Size (t+1)

0.05

0.00

Apply to communities,
rather than populations




| 4. Trait-based demography

Reinterpreting population statistics in terms of comi
and ecosystem statistics

Net Primary Productivity Dominant right eigenvalue

Trait distributions Dominant right eigenvector
Resilience Damping Ratio
Duration of successional stages Life Expectancy

Sensitivity/Elasticity Eigenvectors

Amazon Rainforest © Jake Bryant Merow and Enqwst, In prep



