

BioRE CH :Biodiversity-Remote sensing for Estuarine and Coastal Habitat research

Anthony Campbell^{1,2}, Daniel Jensen³, Atticus Stovall^{1,4}, Elhadi Adam⁵, Pati Thakali⁵, Marc Simard³, Kyle Smith⁶, Ruth-Mary Fisher⁶, Althea Grundling⁷, Piet-Louis Grundling⁸, Heidi van Deventer⁹, Danielle Seymour⁶, Laven Naidoo¹⁰, Abigail Barenblitt^{1,2}, and Lola Fatoyinbo¹

¹Goddard Space Flight Center, ²Unvierstiy of Maryland, Baltimore County, ³Caltech/Jet Propulsion Laboratory, ⁴University of Maryland, ⁵University of the Witwatersrand, ⁶SANParks, ⁷Agricultural Research Council, ⁸Department of Environmental Affairs, ⁹Council for Scientific & Industrial Research, ¹⁰Gauteng City-Region Observatory

Jet Propulsion Laboratory California Institute of Technology

Project goals

- We propose to evaluate the drivers of biodiversity across the land ocean aquatic continuum with state-of-the-art remote sensing, and investigate the potential impacts of climate change on coastal biodiversity
 - Map: Plant Functional Types and Essential Biodiversity Variables
 - MFT1.3 Coastal saltmarshes and reedbeds
 - M1.1Seagrass meadows (Keith et al. 2023)
 - **Understand:** Biodiversity Drivers

Predict: Climate Impacts

Outline

Satellite study results

height and vertical structure

Field photos

Fieldwork

- 64 Plots across 3 estuaries
 - Many more GPS points associated with species location

Kilometers

Field photos

AVIRIS-ng Spectral Curve Plot 59

Plot 59- Spectral Survey

- Within plot spectral variability was high
- Plot overlapped lower and upper marsh

Results-Regional Analysis

- Train convolution neural network on planet images to classify six landcovers,
 - three plant functional communities of interest (Submerged Aquatic Vegetation (SAV), salt marsh, and reeds & sedges).
- Model applied to all estuaries across the region and all cloud free images from December to January (~16-30 images).

Base images

Classified outputs

Langebaan coastal wetland probability raster:

Knysna coastal wetland probability

Discrete Extent Maps

- We predicted coastal wetland extent for 74 estuaries in the Western Cape Province. We mapped a total of **12,643.4** ±
- 614.1 ha of salt marsh & reed beds
- 2491.0 ± 34.2 ha of SAV
- Salt marsh: **2627.0 ± 17 ha**
- Reeds & sedges: **10016.42 ± 597 ha**

Discrete Extent Maps

The temporal probability raster also allow for mapping of other important marine climate variables such as Macroalgae extent.

Plant functional community by estuary type 6000 -SAV **Reeds & Sedges** Salt marsh 4000 -Area (ha) 2000-Temp. Open/Close (n=38) 0 -Estuarine Bay (n = 1)Perm. Open (n=17) Lagoon (n = 1)Lake (n=4)

Open/Close Estuary

Open

Close

Coastal wetland species richness

- Predicted richness based on satellite classification and vegetation plot data
- *In situ* the third quartile of species richness was 5
- High wetland species considered areas predicted as having greater than 5 species

Regional-Coastal wetland species richness

Swartvlei

- 5 vegetation plots collected throughout the area of the scanes
- Vegetation heights from 8 cm to 200 cm

Swartvlei

- 5 vegetation plots collected throughout the area of the scanes
- Vegetation heights from 8 cm to 200 cm

In situ vegetation height

- Collected ten top of canopy vegetation heights for each vegetation plot.
- Classified by plant functional community

ICESat-2

Processed ATL-03 data to estimate ground surface and low-stature canopy heights. Can ICESat-2 capture low stature vegetation?

Takeaways

- Mapped key plant functional communities and species richness across all estuary of the GCFR.
- Satellite data is demonstrating success in monitoring
- Excited for additional context and insight that can be provided by the Airborne data

A Huge Thanks to those who helped with fieldwork!