Biodiversity, connectivity, and ecological forecasting:

Applying NASA earth observation data to conservation management in the Greater Kruger National Park region, South Africa

Jody Vogeler (co-PI)¹, David Bunn (co-PI)², Steve Filippelli¹, Derek Fedak¹, Neil Carter³, Sharon Hall⁴, Melissa McHale²

Project Team

Co-PIs

David Bunn - UBC

Jody Vogeler - CSU

Students/Researchers

Derek Fedak -Steve Filippelli -CSU

CSU

Melissa McHale - UBC

Neil Carter - UofMI

Sharon Hall - ASU

End Users

South African National Parks

Associated Private Nature Reserves

Nsasani Trust

Agricultural Research Council, South Africa/SAEON

Greater Kruger National Park Region (GKNP)

21

1. Elephant culling stopped 1994

3. KNP closes 1/3 of waterholes

2. Veterinary and boundary fences dropped

4. Land restitution; urbanization

1. Elephant culling stopped 1994

2. Veterinary and boundary fences dropped

3. KNP closes 1/3 of

waterholes

4. Land restitution; urbanization

2. Veterinary and boundary fences dropped

3. KNP closes 1/3 of waterholes

21

Characterize current vegetation patterns & changes

Characterize current vegetation patterns & changes

Predict habitat & connectivity for focal species

Characterize current vegetation patterns & changes

Predict habitat & connectivity for focal species

Develop Management Forecasting tool

Focused on potential consequences of waterhole management and fence removal decisions.

Characterize current vegetation patterns & changes

Predict habitat & connectivity for focal species

Develop Management Forecasting tool

Focused on potential consequences of waterhole management and fence removal decisions.

200

Characterize current vegetation patterns & changes

Scaling-up GEDI metrics to continuous extents

200

Scaling-up GEDI metrics to continuous extents

Predictors

ECOSYSTEM LIDAR

300k samples

2018 2019 2020 2021 2022 rain year

rain_year • 2018

2019

2020

20212022

80000

60000 40000 20000

- Landsat time series
 - wet and dry seasons using Landtrendr

• PALSAR

- Using PALSAR v2 mosaics for 2007-2010, 2014-2022
- Multi-temporal speckle filter and power conversions
- Random Forest Models for RH98, Cover, FHD, and PAI

Before speckle filter

After speckle filter

Scaling-up GEDI metrics to continuous extents

Predictors

- Landsat time series
 - wet and dry seasons using Landtrendr

• PALSAR

- Using PALSAR v2 mosaics for 2007-2010, 2014-2022
- Multi-temporal speckle filter and power conversions
- Random Forest Models for RH98, Cover, FHD, and PAI

20000

2018 2019

2020 2021 2022

rain year

Scaling-up GEDI metrics to continuous extents

Predictors

ECOSYSTEM LIDAR

rain_year

2018

2019

2020

· 2021

2022

80000

60000 40000

20000

2018

300k samples

2019 2020 2021 2022

rain year

- Landsat time series
 - wet and dry seasons using Landtrendr
 - Next steps will include testing CCDC
- PALSAR
 - Using PALSAR v2 mosaics for 2007-2010, 2014-2022
 - Multi-temporal speckle filter and power conversions
 - Next steps may include cross-calibration between PALSAR 1&2
- Random Forest Models for RH98, Cover, FHD, and PAI

Scaling-up GEDI metrics to continuous extents

Reductions in predicted canopy cover from both forest clearing and fires between 2015 and 2021.

Vegetation Patch Classes:

Combination of herbaceous and woody cover classes in patch classification

Vegetation Patch Classes:

Combination of herbaceous and woody cover classes in patch classification

Vegetation Patch Classes:

Combination of herbaceous and woody cover classes in patch classification

- Overall accuracy currently 0.32
- Many issues from messy reference data
- Expanding with APNR data
- Highest confusion between Wlo_Hlo & Wmed_Hlo,

Characterize current vegetation patterns & changes Predict habitat & connectivity for focal species

21

Develop Management Forecasting tool

Wildlife Occupancy and Connectivity

Wildlife Occupancy and Connectivity

6000

Oxford Double Dam

W Supersite

S23 Open Pan

Camera Sites
Camera Sites
APNRs

- Camera data collection focused on seasonal waterhole occupancy
- Will supplement with SANParks aerial survey data for larger occupancy modeling to further inform the connectivity models.

Wildlife Occupancy and Connectivity

Occupancy Modeling Covariates

Category	Variable	Distribution	Original Source(s)
Landscape	Distance to nearest surface-water	Gamma	SANParks, Dept of FFE, ARC, TA
	Normalized Difference <u>Greennes</u> Index (NDVI)	Normal	Landsat 8
	Normalized Difference Wetness Index (NDWI)	Normal	Landsat 8
Habitat	Canopy Height (RF98)	Gamma	GEDI
	Canopy Cover (proportion of woody biomass)	Beta	GEDI
	Grassland/Savanna Classification	Binomial	Dept of FFE
	Ephemeral or Perennial Waterhole	Binomial	Landsat 8
Climate	Monthly Average Temperature	Normal	WorldClim
	Monthly Cumulative Precipitation	Gamma	WorldClim
Management	Artificial or Natural Waterhole	Binomial	SANParks, ARC, TA
	Private or Public Management	Binomial	Land Ownership
		-	

◎ 005 58"F14°C ● 05/21/2022 15:54:28

Waterhole distribution and status

ab shell

Waterhole distribution and status

No Real and

From Occupancy to Habitat Connectivity

- Occupancy models to inform seasonal "resistance" layers
- Circuit Theory [Circuitscape/Omniscape]
- Based on changing environmental variables

Decision Support Tool

Thank you!

A special thank you

to all our South African team members!

