The forest from the trees: predicting understory abundance from remote sensing with scaling theory

ADAM EICHENWALD University of Maine

SYDNE RECORD University of Maine

JON KNOTT United States Forest Service JOHN GRADY Wash University in St Louis

QUENTIN READ US Department of Agriculture

MARCOS RODRIGUEZ University of Maine

Hamraz et al. (2017) Scientific Reports

Grady, John M., et al. (2024). "Life history scaling in a tropical forest." Journal of Ecology

Stem Diameter (cm)

Workflow

Determine how scaling relationships should change based on forest environmental characteristics (age, disturbance, type, etc)

Delineation

Demarcate the crown of each individual canopy tree in a forest from RGB, LiDAR, or hyperspectral images

Canopy Trees

Derive the size of each canopy tree from its height, create canopy size-abundance scaling relationship

Understory Trees

Interpolate the missing component (understory) of the sizeabundance scaling relationship based on (1), (2), and (3)

Research Questions

- Do forests converge to a size-abundance slope of -2 absent disturbance?
- 2) Does disturbance induce predictable deviations from -2?
- 3) Do characteristics such as forest age, maximum tree height, and mortality predict sizeabundance slopes without accounting for disturbance?

Menlove & Healey (2021) ORNL DAAC

Methods

Fit size-abundance distribution to each plot, obtain slope estimate

Model slope as response variable, forest characteristics as predictors using Bayesian statistics

Account for effect of space by including ecoregion as a spatially autocorrelated variable

Response variable: Size
abundance slope

Predictors: Disturbance presence/absence, maximum forest height, stand age, mortality

Results

In revision at PLOS Biology

Individual canopy tree species maps for the National Ecological Observatory Network

Ben. G. Weinstein, Sergio Marconi, Alina Zare, Stephanie A. Bohlman, Aditya Singh, Sarah J. Graves, Lukas Magee, Daniel J. Johnson, Sydne Record, Vanessa E. Rubio, Nathan G. Swenson, Philip Townsend, Thomas T. Veblen, Robert A. Andrus, Ethan P. White

Jucker et al. (2017) *Global Change Biology* $DBH = e^{[\alpha + \beta * \ln(Height * Crown \, Diameter)]} * e^{\frac{\sigma^2}{2}} + \varepsilon$

Acknowledgements

- Record Lab
- Ben Weinstein
- NASA award 80NSSC23K0421 P00001
- US Forest Service
- Harvard Forest
- NEON
- Hatch project number ME022425

Plot Design

Environmental Variables Alter Scaling Slope

Duncanson et al. (2015) *Global Ecology and Biogeography*

Hypotheses Regarding Disturbances

log Diameter

log Diameter

[[

Journal of Theoretical Biology

journal homepage: www.elsevier.com/locate/yjtbi

Enquist et al. (2009) PNAS

Variance in tree growth rates provides a key link for completing the theory of forest size structure formation

Jian Zhou ^{a,*}, Kailiang Yu^b, Guanghui Lin^c, Zhiheng Wang ^{a,*}

Zhou and Lin (2018) showed that this paradox results from the ignorance of growth rate difference...Nevertheless, the -2 [size-abundance relationship] of trees in natural forests is widely demonstrated