A decision-making activity to guide archipelago-wide rewilding of

Galapagos giant tortoises

State University of New York College of **Environmental Science and Forestry**

Parque Nacional GALÁPAGOS Ecuador

EARTH SCIENCE APPLIED SCIENCES

A decision-making activity to guide archipelago-wide rewilding of

Galapagos giant tortoises

Investigators

Giorgos Mountrakis PI, SUNY ESF

James Gibbs Co-PI, SUNY ESF / Galapagos Conservancy

Student

Atef Amriche PhD Student, SUNY ESF

Staff

Gillian Avruskin Researcher, SUNY ESF

End Users

Dr. Jorge Carrion, Director of Conservation, Conservando Galapagos; Advisor: Iniciativa Galapagos / Galapagos National Park Directorate

Washington Tapia, General Director, Conservando Galapagos; Advisor: Iniciativa Galapagos / Galapagos National Park Directorate

Background

Each tortoise represents 10,000 individuals

Background

The Galapagos Islands have been the focus of perhaps the largest-scale "rewilding" effort ever attempted on Earth. Over the last 60 years, > 10,000 giant tortoises have been reared in captivity and released to the wild.

Project Motivation & End User Need

Goal: Create an integrated decision support system that will guide decisionmaking on the "<u>where and when</u>" to rewild tortoises considering:

expected future climatic conditions while meeting multiple objectives including probability of population establishment, ecosystem status, biodiversity enhancement, economic outcomes, and operational costs

It is anticipated the tool under development will be a key component of the decadal plan guiding restoration efforts

Decision Support Tool

Development in R Shiny

CSV	Excel					Se	earch:		
	Island	÷	Adults 🔶	Juveniles 🍦	Start.Year 🝦	End.Year 🍦	Scenario		
1	Santiago		10	5	2030	2040	0C		
2	Pinta		10	10	2030	2040	2 C		
3	Isabela		0	5	2025	2040	2 C		
4	Isabela		0	5	2041	2070	4 C		
5	Fernandina		5	7	2040	2070	4 C		
6	Pinzon		5	65	2040	2070	4 C		
7	Santa Cruz		9	16	2040	2070	4 C		
8	Santa Fe		27	14	2040	2070	4 C		
9	San Cristobal		38	36	2040	2070	4 C		
10	Floreana		46	38	2040	2070	4 C		
howing : Start S	1 to 10 of 12 entries imulations						Previous	1	2

Decision Support Tool

Processing Steps User Defined Scenario Vegetation Prediction

NDVI 2041-2060 Prediction under different RCPs

100 km

Emission scenarios: Representative Concentration Pathways RCP26 (lowest), RCP45, RCP60 and RCP85 (highest emissions)

NDVI 2061-2080 Prediction under different RCPs

100 km

Emission scenarios: Representative Concentration Pathways RCP26 (lowest), RCP45, RCP60 and RCP85 (highest emissions)

Processing Steps

User Defined Scenario Vegetation Prediction Species Distr. Prediction

Variable	Percent contribution
ndvi-mean	59.9
nest_dist	27.3
prec_mean_chelsea_v1	3.9
slope	3.4
tmean_mean_chelsea_v1	2.8
aspect_catg	2.7

AUC = 0.73

Processing Steps

Linking GEDI-derived Biomass to Tortoise Density

Processing Steps

Rewilding Costs

Costs									
Captive care (US\$/tortoise/year)	Constant	190							
Translocation: captivity to Floreana (US\$/trip)	Constant	10,000							
Translocation: Wolf Volcano to captivity or Floreana (US\$/trip)	Constant	100,000							
New corral (US\$/corral)	Constant	35,000							
Genetic testing (US\$/sample)	Constant	15							

Tourism Benefits

 ${\sim}10,000$ images mined from Flickr, Classified with ML

Science in Action

14

User Defined Scenario

Climatology: CHELSA (Climatologies at high resolution for the earth's land surface areas)

Model: IPSL-CM5A-LR model, Institut Pierre Simon Laplace, fifth version

Emission scenarios: Representative Concentration Pathways RCP26 (lowest), RCP45, RCP60 and RCP85 (highest emissions)

Floreana (Jan, 2025 rewilding)

End User Engagement Activities

INTERNATIONAL WORKSHOP

Initiativa Galápagos: Blue-print for tortoise restoration 2025-2050

TBD – Jan, 2025

EARTH SCIENCE APPLIED SCIENCES

State University of New York College of Environmental Science and Forestry

Thank you