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CORAL REEFS AS A MODEL ECOSYSTEM (BUT ALSO AN IMPERILED ONE)

2 Habitat heterogeneity

Is there a relationship 
between satellite-
mapped habitats and 
either fish or coral?

How do different 
habitat map products 
change the strength of 
this relationship?

1 Spectral diversity

Does remotely sensed 
spectral diversity correlate 
with diver measured reef 
fish diversity?

How does this spectral-
species relationship change 
when using different types 
of remote sensors?

3 Self-Organization

What causes self-
organization of reefs at 
scales much larger 
than the organisms that 
build them?

What can we learn 
about the state of the 
ecosystem from these 
patterns?

4 Scaling

How do these relationships change with the scale of observation?



THE MARINE BIODIVERSITY AND SCALING PROJECT (NASA ROSES BIODIVERSITY AWARD 20-BIODIV20-0108 )

• MarineVERSE takes coral reefs as a model ecosystem and takes four approaches to amplifying 
our ability to remotely sense ecosystem-scale biodiversity
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(Section 1.5)
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1.6.2-1.6.4)
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Fluid Lensing

Correlations 
(Section 1.6.5)

1. α-Diversity vs      
Spectral Diversity 

(1.6.2)
2. α-Diversity vs β-

Diversity (1.6.3)
3. Emergent Patterning 

vs All Diversity Metrics 
(1.6.4)

4. Reverse Hypothesis 
Testing (1.6.6)

Large Data-Processing performed on HECC 
Pleiades Supercomputing 

Storage and Access
Shared data stored on 
Amazon S3 Servers

All data viewable on 
handheld devices 
(NeMO-Net interface)

Habitat Maps 
(Section 1.6.1)
LOF/GRE Maps
NeMO-Net Maps

MetricsData Sources
Questions

α-to-Spectral Diversity Hypothesis 

α-to-Habitat Diversity Hypothesis 

Detecting Ecosystem Transitions from Self-
Organization

Scaling effects
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SPECTRAL VARIABILITY HYPOTHESIS

adapted from 
Cavender-Bares et al. (2021)

Pangtey et al. (2022)

Predicted map of tree diversity

Simple idea:
Pixels over homogenous areas have lower spectral variance 

(within a moving window) than pixels over heterogeneous areas.
Heterogeneous areas have more niches, so higher biodiversity. 

F = pixel value
i, j = spatial coordinates (pixels)
a = spectral coordinate (bands)
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DATA FOR OUR STUDY

Guam

KSLOF-GRE
GLTMP

Reef fish surveys (2 sources):

Khaled bin Sultan Living Oceans Foundation Global Reef Expedition
• 2x 30 m transects at up to 5 depths per site
• A global transect
• Mostly forereef and lagoon settings

Guam Long-term Coral Reef Monitoring Program 
• 2x stationary 15 min surveys per site at one depth
• Guam only
• Hardbottom reef terrace

Imagery (4 sources):

WorldView-2 (WV-2)
• Multispectral 2.5 m resolution 
• Panchromatic 0.5 m resolution
• Atmospherically corrected reflectance (level 2A) 

Drone-based
• RGB visible bands at 0.014 m resolution
• Raw imagery
• Fluid lens-corrected imagery
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FISH SPECIES RICHNESS AND SHANNON’S DIVERSITY

Guam

KSLOF-GRE
GLTMP



EXAMPLE OF THE FOUR IMAGE SOURCES AND RAO’S Q

6 Window sizes for Q calculation in each case
WV-2: 0.5, 1, 5, 10, 25, 50 ha Drone: 0.1, 0.5, 1, 5, 10, 50 m2

About the same number of pixels but different spatial scales



WHAT IS FLUID LENSING?



CORRELATIONS BETWEEN FISH DIVERSITY METRICS AND RAO’S Q
For the global transect
• WV-2 MS significant positive correlations in all cases 
• WV-2 Pan significant positive correlations large windows

For the Guam site specifically
• Neither WV-2 nor raw drone data correlated at all
• Fluid lens-corrected imagery had highest correlations

Two most important conclusions:
• Scale matters: larger windows of WV-2 respond to 

habitat variance not local structure
• Fluid lensing corrections for caustics, glint, and depth 

make a huge difference for using drone imagery
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• Sam Purkis presented on these two topics at this meeting last year.
• I have some slides and happy to take questions but skipping for the moment due to time.
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• Fluid-lensing imagery and habitat maps being produced as part of this and other projects:
http://nemonet.info/data-viewer
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Where to next?



Jake Longnecker

• Idea is to expand the concept of habitat

• For most benthic remote sensing, 
habitat = benthos = relatively static 

• Bring in the dynamics of the water 
column using new NASA sensors 
ECOSTRESS and PACE as well as 
historical record from Landsat and 
MODIS etc. 

Poster 5 PM Tonight!



QUESTIONS
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Dr. Anna Bakker

HABITAT DIVERSITY PREDICTS SPECIES DIVERSITY ON CORAL REEFS 
Bakker, et al, (2024). Remotely sensed habitat diversity predicts species 
diversity on coral reefs. Remote Sensing of Environment, 302, p.113990





• Measured by in situ, by divers in most of the data we have
• α-diversity captures species diversity at a local scale
• Parameterized using a range of indices including species-

richness, species-variation, species-evenness or combinations:
• such as Shannon’s and Simpson’s Indices
• Typically applied to corals or reef fish

KEY TERMS



KEY TERMS

• Derived from remote sensing imagery
• Refers to variation in spectral intensity or 

reflectance, across sets of pixels
• Rao’s Q
• Terrestrial studies posit that spectral variation is 

a surrogate for ecological niches, in turn 
predictive of biodiversity



KEY TERMS

• A measure of spatial variation in 
benthic character

• Synonymous with ‘habitat 
heterogeneity’

• Shannon’s diversity found to 
work better than Beta



GLOBAL BENTHIC HABITAT MAPS
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Dr. Haiwei Xi

Xi, et al, Emergent Patterning in Coral Reefs Through Spatial Self-Organization. in prep.

DETECTING ECOSYSTEM TRANSITIONS FROM SELF-ORGANIZATION

• Reticulated reefs clustered by spatial 
patterns defines the diversity of coral 
reef morphogenesis

• Reaction-diffusion model simulates 
the mapped morphologies and their 
trajectories through time

• Reef evolution directly observable 
from space
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REACTION-DIFFUSION MODEL FOR REEF PATTERN FORMATION

1 km


