CCE banner
 
Funded Research

Characterization of CH4 emissions from high latitude lakes in North America using multi-scale remote sensing

Walter Anthony, Katey: University of Alaska, Fairbanks (Project Lead)

Project Funding: 2011 - 2014

NRA: 2010 NASA: Carbon Cycle Science   

Funded by NASA

Abstract:
(CH4), including geographic and temporal variability, should be resolved to allow policy makers to take informed action to cope with the impending societal problems of climate change. Based on extrapolation of geographically limited field studies, thermokarst (thaw) lakes, which cover up to 40% of the land in some regions, have recently been recognized as a major natural source of 14C-depleted biogenic (and sometimes geologic) CH4. Widespread surface permafrost thaw by 2100 will subject a large fraction of the permafrost carbon pool (1672 Pg C) to methanogenesis in lake bottoms, exacerbating climate warming. This natural CH4 source potentially overlaps the 14C-free anthropogenic source attributed to energy development and needs to be accounted for in the atmospheric CH4 budget. To our knowledge, no remote sensing (RS)-based data sets on northern lake CH4 emissions exist. To constrain estimates of natural 14C-depleted CH4 sources, we propose to develop regional, multi-scale maps of seasonal and mean annual high latitude North American lake CH4 emissions using SAR, optical RS, and GIS modeling. This project will expand upon productive results from our predecessor NASA-funded project #NNX08AJ37G, which demonstrated that SAR backscatter data is useful in detection and quantification of CH4 seep gas pockets trapped in lake ice. We made significant progress in understanding SAR signal interactions with CH4 bubbles, determining sensitive SAR observation parameters, and establishing statistically significant models. Our next goals are to: i) Automate separation of the CH4 bubble signals in SAR from other confounding signal components using a Textural Classifier Neural Network Algorithm, ii) Formulate a mathematical relationship between SAR backscatter and emitted CH4 volume, and iii) Develop generalized spatial models for the transfer of locally established findings to regional levels. We will also build upon recent pilot work showing the potential use of optical aerial and high-resolution satellite imagery to detect and quantify CH4 seeps, providing cross-validation of results from SAR and field data. In addition to biogenic CH4 seeps, we will investigate the potential relationship between permafrost thaw and geologic (associated with underlying coal, natural gas, and potentially gas hydrates) CH4 seeps, which are also known to occur in thermokarst lakes. This multi-scale project will include: 1) Ground-based validation of biogenic and geologic CH4 seeps; 2) aerial surveys of CH4 in lake ice; 3) site-specific quantification of CH4 seeps using SAR and optical RS; 4) regional up-scaling to produce maps of seasonal and annual lake CH4 emissions in major North American lake districts using RS and GIS-based lake classification, new and published lake CH4 ground data, and modeled lake-ice phenology; and 5) comparisons with NASA airborne CARVE and satellite AIRS atmospheric CH4 data. Anticipated results include identification of hotspot regions of biogenic and geologic lake CH4 emissions associated with permafrost thaw and large pulse releases during spring ice-melt. The RS products of this study will inform decision makers and scientists about the northern lake source in the global atmospheric CH4 budget, provide additional ground information from northern high latitude natural lake CH4 (and CO2) sources for relevant current (AIRS, EV-1 CARVE) and future (OCO) NASA missions, address the National Research Council's recommendation to consider potential for abrupt release of CH4 (from geologic CH4 as terrestrial permafrost thaws), and meet shared objectives of NASA's Earth Science Research Program for carbon cycle science and the North American Carbon Program (NACP) for understanding and predicting changes in North American carbon pools (e.g. permafrost-stored carbon converted to CH4 in thermokarst lakes).

Publications:

Walter Anthony, K., Daanen, R., Anthony, P., Schneider von Deimling, T., Ping, C., Chanton, J. P., Grosse, G. 2016. Methane emissions proportional to permafrost carbon thawed in Arctic lakes since the 1950s. Nature Geoscience. 9(9), 679-682. DOI: 10.1038/ngeo2795

Engram, M., Anthony, K. W., Meyer, F. J., Grosse, G. 2013. Characterization of L-band synthetic aperture radar (SAR) backscatter from floating and grounded thermokarst lake ice in Arctic Alaska. The Cryosphere. 7(6), 1741-1752. DOI: 10.5194/tc-7-1741-2013

Gao, X., Adam Schlosser, C., Sokolov, A., Anthony, K. W., Zhuang, Q., Kicklighter, D. 2013. Permafrost degradation and methane: low risk of biogeochemical climate-warming feedback. Environmental Research Letters. 8(3), 035014. DOI: 10.1088/1748-9326/8/3/035014

Harazono, Y., K. Walter Anthony, H. Nagano, K. Ichii, M. Ueyama. Evaluation of Methane exchange in the Arctic and sub-Arctic Terrestrial Ecosystem. Proceedings of the 4th symposium on Polar Science, NIPR, Tachikawa, Tokyo, Japan, Nov.12-15, 2013.

Grosse, G., Jones, B., Arp, C. 2013. 8.21 Thermokarst Lakes, Drainage, and Drained Basins in: Treatise on Geomorphology. Elsevier, 325-353. DOI: 10.1016/B978-0-12-374739-6.00216-5

Jones, B. M., Gusmeroli, A., Arp, C. D., Strozzi, T., Grosse, G., Gaglioti, B. V., Whitman, M. S. 2013. Classification of freshwater ice conditions on the Alaskan Arctic Coastal Plain using ground penetrating radar and TerraSAR-X satellite data. International Journal of Remote Sensing. 34(23), 8267-8279. DOI: 10.1080/2150704X.2013.834392

Kasischke, E. S., Amiro, B. D., Barger, N. N., French, N. H. F., Goetz, S. J., Grosse, G., Harmon, M. E., Hicke, J. A., Liu, S., Masek, J. G. 2013. Impacts of disturbance on the terrestrial carbon budget of North America. Journal of Geophysical Research: Biogeosciences. 118(1), 303-316. DOI: 10.1002/jgrg.20027

Parsekian, A. D., Grosse, G., Walbrecker, J. O., Muller-Petke, M., Keating, K., Liu, L., Jones, B. M., Knight, R. 2013. Detecting unfrozen sediments below thermokarst lakes with surface nuclear magnetic resonance. Geophysical Research Letters. 40(3), 535-540. DOI: 10.1002/grl.50137

Schuur, E. A. G., Abbott, B. W., Bowden, W. B., Brovkin, V., Camill, P., Canadell, J. G., Chanton, J. P., Chapin, F. S., Christensen, T. R., Ciais, P., Crosby, B. T., Czimczik, C. I., Grosse, G., Harden, J., Hayes, D. J., Hugelius, G., Jastrow, J. D., Jones, J. B., Kleinen, T., Koven, C. D., Krinner, G., Kuhry, P., Lawrence, D. M., McGuire, A. D., Natali, S. M., O'Donnell, J. A., Ping, C. L., Riley, W. J., Rinke, A., Romanovsky, V. E., Sannel, A. B. K., Schadel, C., Schaefer, K., Sky, J., Subin, Z. M., Tarnocai, C., Turetsky, M. R., Waldrop, M. P., Walter Anthony, K. M., Wickland, K. P., Wilson, C. J., Zimov, S. A. 2013. Expert assessment of vulnerability of permafrost carbon to climate change. Climatic Change. 119(2), 359-374. DOI: 10.1007/s10584-013-0730-7

Walter Anthony, K. M., Anthony, P. 2013. Constraining spatial variability of methane ebullition seeps in thermokarst lakes using point process models. Journal of Geophysical Research: Biogeosciences. 118(3), 1015-1034. DOI: 10.1002/jgrg.20087

Engram, M., Anthony, K. W., Meyer, F. J., Grosse, G. 2014. Synthetic aperture radar (SAR) backscatter response from methane ebullition bubbles trapped by thermokarst lake ice. Canadian Journal of Remote Sensing. 38(6), 667-682. DOI: 10.5589/m12-054

Gusmeroli, A., Grosse, G. 2012. Ground penetrating radar detection of subsnow slush on ice-covered lakes in interior Alaska. The Cryosphere. 6(6), 1435-1443. DOI: 10.5194/tc-6-1435-2012

Regmi, P., Grosse, G., Jones, M., Jones, B., Anthony, K. 2012. Characterizing Post-Drainage Succession in Thermokarst Lake Basins on the Seward Peninsula, Alaska with TerraSAR-X Backscatter and Landsat-based NDVI Data. Remote Sensing. 4(12), 3741-3765. DOI: 10.3390/rs4123741

Sepulveda-Jauregui, A., Martinez-Cruz, K., Strohm, A., Walter Anthony, K. M., Thalasso, F. 2012. A new method for field measurement of dissolved methane in water using infrared tunable diode laser absorption spectroscopy. Limnology and Oceanography: Methods. 10(7), 560-567. DOI: 10.4319/lom.2012.10.560

Vincent, W. F., Laurion, I., Pienitz, R., Walter Anthony, K. M. 2012. Climate Impacts on Arctic Lake Ecosystems. Climatic Change and Global Warming of Inland Waters. 27-42. DOI: 10.1002/9781118470596.ch2

Walter Anthony, K. M., Anthony, P., Grosse, G., Chanton, J. 2012. Geologic methane seeps along boundaries of Arctic permafrost thaw and melting glaciers. Nature Geoscience. 5(6), 419-426. DOI: 10.1038/ngeo1480

Walter Anthony, K., L. Brosius, 2012. Sheep Creek thaw pond: Thermokarst lakes and methane emissions, In Guide to permafrost and Quaternary geology of the Fairbanks area, Alaska-Guidebook 11, pp. 67-68.

Walter Anthony, K., D. Vas, 2012. Thermokarst and Drunken Forest, In Guide to permafrost and Quaternary geology of the Fairbanks area, Alaska-Guidebook 11, pp. 41-43.

Wooller, M. J., Pohlman, J. W., Gaglioti, B. V., Langdon, P., Jones, M., Walter Anthony, K. M., Becker, K. W., Hinrichs, K., Elvert, M. 2012. Reconstruction of past methane availability in an Arctic Alaska wetland indicates climate influenced methane release during the past ~12,000 years. Journal of Paleolimnology. 48(1), 27-42. DOI: 10.1007/s10933-012-9591-8

Isaksen, I. S. A., Gauss, M., Myhre, G., Walter Anthony, K. M., Ruppel, C. 2011. Strong atmospheric chemistry feedback to climate warming from Arctic methane emissions. Global Biogeochemical Cycles. 25(2). DOI: 10.1029/2010GB003845

Meyer, F. J., Nicoll, J. B., Doulgeris, A. P. 2011. Characterization and extent of randomly-changing radio frequency interference in ALOS PALSAR data. 2011 IEEE International Geoscience and Remote Sensing Symposium. DOI: 10.1109/IGARSS.2011.6049706

Prowse, T., Alfredsen, K., Beltaos, S., Bonsal, B. R., Bowden, W. B., Duguay, C. R., Korhola, A., McNamara, J., Vincent, W. F., Vuglinsky, V., Walter Anthony, K. M., Weyhenmeyer, G. A. 2012. Effects of Changes in Arctic Lake and River Ice. AMBIO. 40(S1), 63-74. DOI: 10.1007/s13280-011-0217-6

Schuur, E. A. G., Abbott, B. 2011. High risk of permafrost thaw. Nature. 480(7375), 32-33. DOI: 10.1038/480032a


More details may be found in the following project profile(s):