How FIFE and BOREAS changed the World

Then

Now

Flashback !

You have all been time-warped back to

July 20 1994, 0000 UTC

You are waiting for the nightly BOREAS Ops meeting to begin.....

	Thurs	dau		ž	BORE	AS Air	craft/Sa	atellite	Sched	lule						\mathbb{D}
Date:	07-2	1- 94		Mission Hot Site	Manago e: SSA	er: <i>SEL</i> A	LER	S	NSA SA SSA SA	M: NE M: MI	WCO TCHE	MER	<u> </u>			
GMT	1300	1400	1500	1600	1700	1800	1900	2000	2100	2200	2300	2400	100	200	300	400
NSA SSA	800	900	1000	1100	1200	1300	1400	1400	1500	1700	1800	1900	2000	2100	2200	2300
		N-12 4,56		N-9 34,47	1100	S-3 ♥ 30,34				N-1/ ∇ 24,52						
		N-12 24,58		∆ ^{N-9} 49,48	N-9 A 49,37	5 - 3 6, 34				N-11 47,48	N-11 50,63					
ER-2					RE-M	IS .		4	6000	0'						
DC-S				RB-	MN	RT		MS		6000					1	
	ו, פע 	NUQ		- D.J a					YX YX	6000					i I	
CV-58					IN		-)	KVERT	MS (i	i		
6-130	b I			RC-1	15,75	i i			25000	Me	O.A	ars	OTA	YTA	For	Icho
								1 1	20000	ا د. ا				پ ^ر در ر	· •··, 1	
Chief	no.'n			RP-I	2		<u> </u>	 		l l	Cal	at 4PA	t. or	,WL,OB	ss,Y‡	rp, Fen
Helo		↓ 1 1			RH	-TS		RH-	TS		RI	1-BS				
Elect	th l	1			FL	PZ-				Z	60					
Kinga						65		220	0'				(±	i		
Twot	ter			b	FT-	GS	-6		FT-7	<u>5, C.S </u>	200	`o		1	i	
Long	EZ			•9	FL-	<u> </u>		-4 P		FL-G	5	4		Fir	(S	
њ.					RH	-85	{OA,	OBS Page 1		Rн	TS F I	9 B7A 1 No1 2 I 8	,0A,' 1, VJF 3P	4A, OB , G61	s, F. K85,	°^, G9LQ

BOREAS Daily Team Participation Form

16

																						R	١
Thu	rsdav	ŗ																				Ċ)
DATE	17.	-21-	94	Missi	on Ma	nager:	Seller	<u>`</u> \$					-	NSA	SAM:	NEV	VCOI	MER	ک				
Team		<u> </u>		1013	ne: 5		7	8	9	10	11	12	13	14	5AIVI:	$\frac{N(1-1)}{16}$		<u>-1-1-</u> 1 18	10	20	21	22	22
Гсан	Ŵ	Ŵ	W	W	7	ĺ₩.	*	Ŵ	<u> </u>		<u> </u>					10		10	- 17	20	· ·		23
	YPA	YPA	XE	YPA	W.	W	W	OPS							[1
AFM	*	*	*	*	7	9CO	*	*															
	Ŵ	W	*	W	Ŵ	W	W	*	W	*	W												
· ·	OA	DA	W	YOP	OUP	YA	OBS	W	OBS	9.CV	FEN												
TF	*	1	DBS	*	*	*	*	PLO	L C	FEN	1 *		*	· · · ·					<u> </u>	. <i>r</i> -			\downarrow
	bex.	NA I		MIX	OSP	aux		NA I	AW		MIX	YÃ	391		W					W		ORS	Aux
1000 · ···	OFP	0,5P		YJP	085]WIX	my y	PWD	C L	UN SE	OJP	YJP	AUX		WL					120		AŬX	OBS
16	× ×	<u>*</u>	<u> </u>	*	*		17	*			<u> </u>	*	<u></u>							/*		~	<u> </u>
	BP		085	WW.	GES		1 /	OJP	OBS														
TGB	0JP	Ì	GHL	OJP	6			*	×.	OJP													
	.to		1					*	Piez	-#2					· .								
	VIP	-	· ·						120	†				.		· ·							1
HÝD	<u>4čř</u>					. 		SL	HR		<u> </u>			<u> </u>									ļ
		W.	W				W.					W	W		W-TO	W	- MA	W	YPA	w v			
	OF	ITA	THAT				FEN			Je		386	HP4	· ·	JJT	朵	144	CAL	120+	RU			
RSS	K	X	<u>*</u>				∦-			₩		*	*		*	*	*	*	F	*			
	ALLX																						
STAFF	PWD		1																				1
	<u> </u>	L	1 <u> </u>	I		1 6	·		r		<u> </u>	A-1-			· · · ·		$\frac{1}{1}$	AL Lit		ion 1	ako		
J L-	- Joe	ey Lo	ake		Ċ	783	GI	1/11/11	PIRA	31	Te ,	A I -	ALL	ved to	oday	VV -> I	_ = V	9 11 14	0				
BP-	Bear	ver	Pond		5	BC -	Sand	, Bay	Camp	grou	nd	Te	9 0	a - 4	م المناه	BS	LT	-La	ke Te	mper	ature	L L	
Gu.	<u>n</u> :lli	an R	d.		ľ	20-1	twy 1	20'	1	5			k	s - 4	epai	15-				•			
VIL	CILIP			1	í	in i		D.	1				С	- 8	9 601	<u>.</u>							
CAL	Cal	ibrat	ion Ji	te	ł	1K - 11	ardin	ig na	()		Page 1		d	- 0	10	• •							
WL	- Wa	iske.	sui	Lake	2											4							

MM/SAM Issues 07/21/94

- Science meetings: 10 minutes/group.
 NSA 1900, Friday night
 SSA 1830, Saturday night : Snax , please bring beer.
- Tower climbing course in SSA, monday 07/25/94, 1000LT. Last Chance for SSA people.
- Modelers Workshop and tours Modelers will be at the SSA Science mtg + BOG Monday am tours of SSA TF sites. Monday pm tours of the aircraft. Tuesday tours of TF sites. (Wanna see TGB, TE, HYD stuff as well as TF).
- 4. Possible immense BBQ/beer bash at Waskesiu 7/28/94
- 5. Forms for Group reps: these are designed to help try 'em out.
- NSA-OA Site characterisation; TE-9D requested help; TE-22 wants to discuss after the BOG mtg.
- Camera crew touring SSA tomorrow : am - YPA, Ops, pm - OJP, OA, PWD Labs
- 8. NSA low-level aircraft AM radio link up for tuesday.
- 9. SSA-OBS old TE tower site: request from TF-9 to take core samples from 28 trees around the old site. OK?
- 10. No alteration of TE towers without talking with TE captain or Ops
- Want to go to SSA-OA? Arrange access the day before; double up vehicles. (Traffic jam at the gravel pit).
 VERY LIMITED ACCESS TO SSA-OA TOMORROW: ROAD REPAIRS

PLEASE DRIVE CAREFULLY

12, RSS-20 (Vern Vanderbilt) Need manual on GPS. Model Garmin GPS 102, Any info on Garmin (Phone #1) Extra manuals?

IFC OPERATIONS: FLEXIBLE RESPONSE

Southern Site

Falcon

Twin	Otter
King	Air
Elect	ra

	4
	-
Flux A	Aircraft
-	

-

Remote Sensing

Charles -

3-4 Flux towers 6-12 PI teams

Northern site

- Surface teams committed to each site
- Some specialized teams (radiometry) and aircraft committed to either site depending on conditions.

Jim Hansen and Congress (1988)

but the papers were written in 1975, 1979...

FIFE and BOREAS

Its been 29 years since FIFE-87.

How did it all start? .. or what did we know and when did we know it?

1981: NASA Workshop on Land Surface Parameterizations (LSPs) as used in atmospheric General Circulation Models (GCMs). Hydrologists, Meteorologists, Satellite-ists The Book (Ed. Peter Eagleson; 1983) concluded that:

- LSPs were unrealistic and primitive
- Fixed fields of albedo and surface roughness ("made up")
- One-dimensional soil block model
- Beta-function used for Evapotranspiration
- No accounting for vegetation

Question: " Is it worth improving LSPs in GCMs ? "

Note: 4 acronyms on the first chart...

THE BUCKET MODEL

ALBEDO

Prescribed from measurements, biased to visible wavelengths Too dark; forests were 7%, not 13%

W

1.0

0.0

ROUGHNESS

Uniform roughness Tuned to optimize drag or energy balance Usually too rough

EVAPORATION

The bucket model Full bucket: Evaporates like a lake Empty bucket: Dry

e.g.,
$$\frac{dW}{dt} = P - W.E_{wet}$$

M737.003

First Generation LSP

Fixed Albedo Fixed Roughness Simple ET "Manabe bucket model". 150 mm capacity B = W/Wmax

Model Simulated July Precipitation mm/day

Wet Soil Case (β = 1)

Dry Soil Case (β = 0)

Shukla and Mintz, Science 1982

Model Simulated July Surface Temperature °C

Wet Soil Case (β = 1)

Dry Soil Case (β = 0)

Shukla and Mintz, Science 1982

And so ISLSCP was born..

1984: First meetings of ISLSCP, and the first report.

A series of field experiments was called for to:

(i) Collect the data required to develop and improve LSPs, and
 (ii)Develop satellite-based methods to initialize and validate these parameterizations on regional and global scales.

1985-1986: NASA 923 (Biospheric Sciences) steps up to the plate.the search for funds, PI selection, thinking, planning...

1986: The HAPEX-Mobilhy experiment in France

1987: FIFE-87 hits the field near Manhattan, Kansas 15 km by 15 km prairie site, near KSUtoo late to back out now..

FIFE SCIENCE PLAN

INTERNATIONAL SATELLITE LAND SURFACE CLIMATOLOGY PROJECT

EXPERIMENT PLAN

FIFE <u>First ISLSCP Eield Experiment</u>

Final Version : May 1986

International Satellite Land Surface Climatology Project

May 1987

ABL SF CC SRB SM IS Atmospheric Boundary Layer Surface Fluxes Correction/Calibration Surface Radiances/Biology Soil Moisture Integrative Science 67477<u>4</u>35

Staff science (GSFC, KSU) FIFE Information System (GSFC) Soviet teams in 1989

FIFE-87..baptism by fire, chiggers, and sleep deprivation

MetNet, soil moisture monitoring all year

4 Intensive Field Campaigns (IFCs), each ~2 weeks

- Green-up
- Peak Greeness
- Drydown (didn't happen in FIFE-87 ..Kansas stayed green)
- Senescence (peak deadness)

Coordinated measurement plans with on-the-fly improvizations

5 satellites; 10 aircraft; ~150 people.
 Satellite overpass schedule, weather, equipment failures, personnel disasters....
 Coordinated operations management through nightly meetings and real-time radio communications (eventually)
 Long-suffering hardworking Staff from NASA/GSFC Code 923, and Kansas State University

The FIFE Information System

Revolutionary idea, and managed by a revolutionary (a great contribution by Don Strebel) Consistent formatting and documentation for all data sets Data sharing agreements – the key to successful interdisciplinary science

Immediate results of FIFE-87

Very successful collection of almost all the required data sets: simo observations from subsoil to orbit.

No drydown observed > so FIFE-89 was designed and executed

SPOT Simple Ratio

916

W1(PBMR)

Airborne Flux EF

320 340 360 380 400 420 440 460

926

2

926

Ŀ

0.55 0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95

C-ADS: COLA /ICES

CLADS: COLA /ICES

GRADS: COLA/ICES

GRADS. COLA/ICES

FIFE-89 Testbed Area Verification of g_c* vs. Vegetation Index Relationship

REMOTE SENSING SCIENCE

PROCESS MODELS

1020.002 OD6

MEASUREMENTS AND FIELD EXPERIMENT DESIGN

SCALE INTEGRATION

BOREAL ECOSYSTEM - ATMOSPHERE STUDY

CANADIAN CLIMATE CENTRE GCM SCREEN TEMPERATURE DIFFERENCE FOR YEAR

23.041

THE CLIMATE SYSTEM AND THE BOREAL FOREST FORCINGS AND FEEDBACKS

BOREAS was tougher, but so were we...

US and Canadian Project, with international participation.

Southern and Northern Study Areas selected in 1990-91. Each study area ~ 100 km; separated by 600 km

Field Campaigns in 1993, 1994, 1996:

12 aircraft; 1000*1000 km area; 12 towers; 300 people. Complex logistics; communications; operations.

Operating in the wilderness, harsh climate, vile bugs.

Infrastructure taken over by Canada.

AFM	Aircraft fluxes, meteorology	14
TF	Tower flux	10
TE	Terrestrial Ecosystems	21
HYD	Snow and Hydrology	10
TGB	Trace gas and biogeochemistry	10
RSS	Remote Sensing Science	21

IFC OPERATIONS: FLEXIBLE RESPONSE

 Some specialized teams (radiometry) and aircraft committed to either site depending on conditions.

0818.027

Results from FIFE and Boreas

Collection of large integrated data sets.

Data sets that can be used by everyone. (*thanks to FIS, BORIS, ORNL-DAAC*).

Tsunamis of publications.

First – single discipline work, as PIs sorted out their data. Later – interdisciplinary modeling and analysis. Several special issues

Data use continues actively to this day..

Number of Users Accessing Data from ORNL DAAC

Area-integrated Photosynthesis, Conductance are retrievable from orbit

 $\langle A_C, g_C \rangle \propto$ Spectral vegetation index

ppm

Sellers et al. (1997) Randall et al. (1996) Denning et al. (1996)

A1350 065 JD16

...The field experiments arrived just in time for Earth System Science..

Accelerated collaboration between previously separated scientific communities.

Interdisciplinary science (as real work, instead of a cliché).

Incredibly fast development of new models and techniques.

Pathfinder for much EOS work.

A new generation of experienced, motivated students.

Friends, shared adventures, war stories....

So..what was achieved?

- Input for Eos, in the nick of time.
- Complete integrated data sets from subsoil to orbit.
- Development and testing of realistic physiological LSPs; integration of physiology and carbon exchange.
- Integration and testing of remotely-sensed data into surface process models and GCMs.
- Scaling up to the globe: production of global data sets from satellite data.
- More credible (3rd-generation) LSP-GCMs for global change prediction.

..it was worth the effort ..