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A.	Linking	spectra	to	functional	and	phylogenetic	diversity	
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B.	Spectral	diversity	at	different	spatial	scales	

Spectral	heterogeneity	
from	vegetation	in	a	plot	
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Detecting	plant	diversity	in	manipulated	
experiments	



Spectra	predict	functional	traits	(PLSR	models)	
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At	the	leaf	level,	
spectral	diversity	
predicts	productivity	

Schweiger	



Spectral	diversity	is	tightly	coupled	to	functional	diversity	(LES	traits)		
and	phylogenetic	diversity	

																														Spectral	diversity																																		

Fu
nc
9o

na
l	d
iv
er
si
ty
	

Ph
yl
og
en

e9
c	
di
ve
rs
ity

	



Spectral	profiles,	coefficient	of	variation,	and	local	
maxima	of	the	coefficient	of	variation		
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Spectral	distances	between	each	prairie	species	
and	all	other	species	correlate	with	phylogenetic	

distances	(for	most	species)	



Remotely	sensed	
spectral	diversity	
predicts	plant	diversity	
at	fine	spatial	resolution	
better	than	at	course	
spatial	resolution	

Plant	diversity	-	Simpsons	Index	

R.	Wang	



Soil	removal	methods	allow	detection	of	plant	
diversity	in	cases	where	plant	density	is	low	

Hamed	Gholizadeh		

Species	Richness	 Species	Richness	
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NIMBioS	working	group	on	Remote	Sensing	of	Biodiversity	

Spectral	location	in	the	tree	of	life	
will	require	a	spectral	library	and	
can	be	integrated	with	species	
distribution	data	to	improve	plant	
diversity	monitoring	



 

 

V. Linking spectral data to the tree of life 
 
Figure 12. Linking spectra to the tree of life. A) Time calibrated phylogeny of 565 species of vascular plants for 
which hyperspectral information is available from three continents. Phylogenetic signal of different spectral 
regions for the B) Temperate (Eastern North America) and C) Tropical (Peru) datasets. Overall, the visible 
regions of the spectra, associated with leaf pigments, is considerably more evolutionarily labile than spectral 
regions associated with structural leaf components. D) Regions leaf-level spectral data were collected from 
project collaborators. 
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Figure 13. Spectral conversion between 
instruments (ASD to SVC) was necessary to 
combine data. Our team developed the 
reconcile R package, which implements 
PLSR and Bayesian Model Averaging 
methods to convert spectra taken with 
different instruments. 
https://github.com/meireles/reconcile. The 
top row shows SVC spectra (which would be 
normally unknown), ASD spectra and SVC 
spectra predicted from the ASD spectra. The 
second row compares four true SVC spectra 
(blue) to the predicted SVC spectra (mean in 
red, 95% credible interval in black).  

Leaf	level	-	high	lability	in	spectral	regions	associated	
with	pigments	



Temporal	variability	of	spectra:	lability	of	
the	visible	region.		



Spectra	are	phylogenetically	conserved	EXCEPT	in	the	
visible	range	associated	with	pigments	for	light	
harvesting	and	photoprotection	

Temperate	North	America	

Tropical	South	America	
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Botanic	gardens	of	the	Americas	

Arnold	Arboretum	IPBES	Americas	Regional	Assessment	

How	to	generate	canopy	spectral	profiles	for	the	plant	tree	of	life…	



Accurate	detection	of	tree	threats	–	
Oak	wilt	

Phil	Townsend	
	

and	many	others	

Jennifer	Juzwik	

Rebecca	Montgomery	



 

 3	

Approach:	Oak	wilt	causes	characteristic	symptoms	that	manifest	themselves	at	the	leaf	level,	canopy	

level	and	stand	level	(Figure	1).	We	hypothesize	that	changes	in	pre-visual	and	visual	patterns	of	leaf	

function,	chemistry,	pigment	composition	at	all	three	scales	will	be	useful	in	accurate	disease	detection.	

Previous	approaches	for	detecting	tree	insect	pest	damage	and	decline	diseases	have	clarified	the	need	

to	decipher	species	identities	as	an	initial	step	(Hanavan	et	al.	2015,	Pontius	et	al.	2005ab).	These	

studies	and	others	have	also	documented	the	reliability	of	remote	sensing	indices,	used	in	a	regression	

framework,	for	detecting	crown	health	declines	at	the	landscape,	tree	and	leaf	level	(Pontius	et	al.	2005	

ab).	We	currently	have	one	year	of	funding	to	conduct	a	greenhouse	study	to	differentiate	oak	wilt	from	

two	other	diseases	(bur	oak	blight	and	bacterial	leaf	scorch,	Xylella	fastidiosa,	which	is	not	yet	

established	in	Minnesota)	and	from	drought	under	experimental	conditions	using	spectral	data.	

Seedlings	of	bur	oak	and	northern	pin	oak	will	be	inoculated	with	the	causal	organisms	and	additional	

seedlings	subjected	to	drought	in	a	factorial	experiment	under	carefully	controlled	conditions.	In	this	

proposal	we	build	on	this	work	by	developing	methods	to	detect	oak	wilt	in	naturally	occurring	
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Figure	1.	Oak	wilt	has	characteristic	symptoms	and	patterns	of	damage	that	are	hypothesized	to	be	discernable	
“pre-visually”	and	statistically	differentiated	from	other	diseases	and	drought	at	multiple	scales:	1)	leaf-level,	2)	
canopy	level	and	3)	stand-level.	Oak	wilt	symptoms	also	manifest	themselves	differently	on	different	oak	hosts	
(Quercus	ellipsoidalis/Q.	rubra	vs	Quercus	macrocarpa,	because	the	different	oak	subgenera	have	different	
responses	and	vulnerabilities	to	the	disease.	The	schematic	provides	a	framework	for	considering	how	the	decline	
symptoms	vary	among	species,	between	diseases,	and	with	drought	relative	to	healthy	trees	at	the	three	scales.	
All	three	scales	will	be	used	to	detect	and	differentiate	oak	wilt	from	other	damage.	Activity	1	focuses	on	leaf-
level	and	canopy	scales;	Activity	2	focuses	on	the	stand	scale;	Activity	3	focuses	on	control	and	containment.	
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II.	PROJECT	ACTIVITIES	AND	OUTCOMES	
	

Activity	1:	Develop	tools	for	accurate	detection	of	oak	wilt	using	hyperspectral	sensors	at	the	leaf	
and	tree	crown	level.	

	

Successful	treatment	of	forest	health	problems	requires	accurate	detection	and	diagnosis	of	cause.	In	
the	case	of	oak	wilt,	different	pathogens	as	well	as	environmental	stress	factors,	such	as	drought,	can	
all	exhibit	similar	symptoms,	creating	challenges	for	managers	in	distinguishing	causal	agents	and	
applying	appropriate	treatment.	In	this	activity,	we	will	use	high	spectral	resolution	instruments	(i.e.,	
spectroradiometers	or	hyperspectral	sensors)	at	leaf	and	crown	levels	to	accurately	distinguish	oak	wilt	
from	environmental	stress	(drought)	in	northern	pin	oak	and	from	drought	and	bur	oak	blight	(BOB)	
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Figure	5.	A)	False	color	image	of	oak	wilt	centers	at	CCESR	from	AISA	
hyperspectral	data,	B)	schematic	of	the	oak	wilt	centers,	a	buffer	around	
them	and	the	healthy	zone;	and	two	preliminary	approaches	for	
detecting	and	classifying	oak	wilt	(C-E).	1:	C&D)	Scaled	(0	to	1)	mean	
spectral	indices	identified	in	Pontius	et	al	(2005a)	from	pixels	extracted	
from	AVIRIS	imagery	(400-2500	nm)	along	transects	(in	stands	26	and	27)	
outside	and	through	oak	wilt	centers,	with	arrows	representing	the	oak	
wilt	center	position	(estimated	from	the	ground	measures);	low	scaled	R	
values	indicate	oak	wilt	trees	in	Panels	1	and	2.	2:	E)	PLS-DA	to	classify	
>46,500	geolocated	pixels	as	unhealthy	trees	inside	oak	wilt	centers	(red)	
at	CCESR	or	as	healthy	trees	(green)	using	spectra	extracted	from	AISA	
imagery	(400-1000	nm).	Assignment	accuracy	of	discriminating	pixels	
with	healthy	trees	(zone	3)	from	pixels	with	oak	wilt	(zone	1)	was	79%	
(See	Activity	2	for	details).	
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II.	PROJECT	ACTIVITIES	AND	OUTCOMES	
	

Activity	1:	Develop	tools	for	accurate	detection	of	oak	wilt	using	hyperspectral	sensors	at	the	leaf	
and	tree	crown	level.	

	

Successful	treatment	of	forest	health	problems	requires	accurate	detection	and	diagnosis	of	cause.	In	
the	case	of	oak	wilt,	different	pathogens	as	well	as	environmental	stress	factors,	such	as	drought,	can	
all	exhibit	similar	symptoms,	creating	challenges	for	managers	in	distinguishing	causal	agents	and	
applying	appropriate	treatment.	In	this	activity,	we	will	use	high	spectral	resolution	instruments	(i.e.,	
spectroradiometers	or	hyperspectral	sensors)	at	leaf	and	crown	levels	to	accurately	distinguish	oak	wilt	
from	environmental	stress	(drought)	in	northern	pin	oak	and	from	drought	and	bur	oak	blight	(BOB)	

!(
!(

0 40 8020
m

!( Oak wilt pocket center
Oak wilt pocket
Buffer
Transect

26-1

	
Leaf	level	

Canopy	level	

Stand	level	
1	

2	

3	

4	

0 10 20 30 40 50 60

0.
1

0.
2

0.
3

0.
4

0.
5

0.
6

0.
7

26_1POST_NWSE.csv

transect position

sc
al

ed
 R

 in
di

ce
s

0 10 20 30 40 50 60

0.
1

0.
2

0.
3

0.
4

0.
5

0.
6

0.
7

26_1POST_SWNE.csv

transect position

sc
al

ed
 R

 in
di

ce
s

0 10 20 30 40 50 60

0.
1

0.
2

0.
3

0.
4

0.
5

0.
6

0.
7

26_1POST_hor.csv

transect position

sc
al

ed
 R

 in
di

ce
s

0 10 20 30 40 50 60

0.
1

0.
2

0.
3

0.
4

0.
5

0.
6

0.
7

26_1POST_vrt.csv

transect position

sc
al

ed
 R

 in
di

ce
s

0 10 20 30 40 50 60

0.
1

0.
2

0.
3

0.
4

0.
5

0.
6

0.
7

0.
8

26_1_NWSE.csv

transect position

sc
al

ed
 R

 in
di

ce
s

0 10 20 30 40 50 60

0.
1

0.
2

0.
3

0.
4

0.
5

0.
6

0.
7

26_1_SWNE.csv

transect position

sc
al

ed
 R

 in
di

ce
s

0 10 20 30 40 50 60

0.
1

0.
2

0.
3

0.
4

0.
5

0.
6

0.
7

26_1_hor.csv

transect position

sc
al

ed
 R

 in
di

ce
s

0 10 20 30 40 50 60

0.
1

0.
2

0.
3

0.
4

0.
5

0.
6

0.
7

26_1_vrt.csv

transect position

sc
al

ed
 R

 in
di

ce
s

Oak	wilt	center	

CCESR	
Stand	26	

Transect	3	

Figure	5.	A)	False	color	image	of	oak	wilt	centers	at	CCESR	from	AISA	
hyperspectral	data,	B)	schematic	of	the	oak	wilt	centers,	a	buffer	around	
them	and	the	healthy	zone;	and	two	preliminary	approaches	for	
detecting	and	classifying	oak	wilt	(C-E).	1:	C&D)	Scaled	(0	to	1)	mean	
spectral	indices	identified	in	Pontius	et	al	(2005a)	from	pixels	extracted	
from	AVIRIS	imagery	(400-2500	nm)	along	transects	(in	stands	26	and	27)	
outside	and	through	oak	wilt	centers,	with	arrows	representing	the	oak	
wilt	center	position	(estimated	from	the	ground	measures);	low	scaled	R	
values	indicate	oak	wilt	trees	in	Panels	1	and	2.	2:	E)	PLS-DA	to	classify	
>46,500	geolocated	pixels	as	unhealthy	trees	inside	oak	wilt	centers	(red)	
at	CCESR	or	as	healthy	trees	(green)	using	spectra	extracted	from	AISA	
imagery	(400-1000	nm).	Assignment	accuracy	of	discriminating	pixels	
with	healthy	trees	(zone	3)	from	pixels	with	oak	wilt	(zone	1)	was	79%	
(See	Activity	2	for	details).	
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Dimensions	of	Biodiversity	grant	from	funded	by	NSF	and	NASA.	Partial	least	squares	discriminant	
analysis	(PLS-DA)	show	a	97%	accuracy	of	oak	species	assignment	at	the	leaf	level	in	the	field	(Figure	4	
A)	and	82%	accuracy	at	the	canopy	level	Figure	4	B).	Analyses	of	these	spectral	data	at	all	three	scales	
provide	strong	evidence	that	it	will	be	feasible	to	distinguish	bur	oak	from	northern	pin	oak	and	to	
differentiate	oak	species	from	other	tree	species.	Differentiation	of	the	dominant	oak	species	that	occur	
in	Minnesota,	which	are	known	to	have	different	vulnerabilities	to	oak	wilt	(Juzwik	2011),	is	a	critical	
step	in	accurate	detection	of	oak	wilt	at	multiple	scales.		

A	second	critical	step	in	detecting	oak	wilt	is	to	detect	functional	decline	in	leaves,	canopies	and	
stands.	Promising	work	through	the	USDA	Forest	Service	(USFS)	indicates	that	decline	in	beech,	ash,	
oak,	and	hemlock	can	be	detected	from	hyperspectral	images	using	spectral	angle	mapping,	which	
compares	spectra	within	pixels	of	an	image	to	an	“ideal”	spectra	for	each	species	(Hallett,	pers.	comm;	
2009	project	report).	Loss	of	chlorophyll	function	and	other	pigments	can	be	readily	detected	using	
spectral	data	(Pontius	et	al	2005;	Pontius	et	al	2008;	Carter	and	Miller	1994;	Zarco-Tejada	et	al	2002).	
Drought	is	also	a	direct	cause	of	decline	that	can	be	spectrally	detected.	We	have	demonstrated	that	we	
can	differentiate	droughted	from	well-watered	oaks	using	spectral	data	at	the	leaf	level	in	greenhouse	
grown	seedlings	(Figure	4C&D).	Multiple	drought	indices	have	been	proposed	for	spectral	detection	of	
drought	stress	(e.g.,	Sims	and	Gamon	2003),	and	spectral	features	are	known	to	provide	accurate	
measures	of	water	content	and	water	potential	(DeBei	et	al	2011)	including	in	oaks	(Cotrozzi	et	al,	in	
review).	In	transects	through	hyperspectral	images	of	known	oak	wilt	centers,	we	find	changes	in	
spectral	indices	previously	associated	with	tree	decline	(e.g.,	Pontius	et	al.	2008)	in	pixels	at	the	disease	
center,	outward	to	symptomatic	and	finally	healthy-appearing	trees	(Figure	5).	These	patterns	are	
promising	and	indicate	feasibility	of	developing	a	method	for	widespread	detection	of	oak	wilt	across	
Minnesota	once	imagery	becomes	available.	They	also	support	the	feasibility	of	developing	protocols	
and	tools	deliverable	to	practitioners	for	reliable	detection	of	oak	wilt	at	the	level	of	individual	trees.	
Furthermore,	our	proposed	tool	would	interface	well	with	the	rapid	detection	method	of	C.	fagacearum	
in	sapwood	of	suspect	trees	currently	under	development	in	a	funded	MITPPC	project.	Our	primary	
goals	for	Activities	1	and	2	are	to	develop	accurate	and	repeatable	methods	for	detection	of	oak	wilt	
and	oak	decline	at	multiple	scales	and	to	differentiate	oak	wilt	from	other	causes	of	decline	or	death,	
particularly	drought	.	Along	with	our	detection	goals,	we	also	seek	to	rigorously	test	and	deliver	the	
best	methods	for	control	and	containment	of	the	oak	wilt	disease	in	Activity	3.	

	
	

	
	
	
	
	

Figure	 4.	 A)	 Probabilities	 of	 correctly	
assigning	 leaf-level	 SVC	 spectra	 in	 the	
field	 from	 individuals	 of	 Q.	 ellipsoidalis	
(QUEL,	 red)	 or	 incorrectly	 assigning	
them	 to	Q.	macrocarpa	 (QUMA,	 green)	
are	 shown.	 B)	 Probabilities	 of	 correct	
assignments	 for	 field	 canopy-level	
measurements	 with	 an	 ASD	 field	 spec.		
C)	 Leaf-level	 spectra	 for	 QUMA	 under	
well-watered	and	drought	treatments	in	
the	 greenhouse.	 D)	 Differences	 in	 the	
spectra,	 highlighting	 the	 spectral	
regions	 most	 critical	 for	 water	
absorption	and	drought	stress.	
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Approach:	Oak	wilt	causes	characteristic	symptoms	that	manifest	themselves	at	the	leaf	level,	canopy	

level	and	stand	level	(Figure	1).	We	hypothesize	that	changes	in	pre-visual	and	visual	patterns	of	leaf	

function,	chemistry,	pigment	composition	at	all	three	scales	will	be	useful	in	accurate	disease	detection.	

Previous	approaches	for	detecting	tree	insect	pest	damage	and	decline	diseases	have	clarified	the	need	

to	decipher	species	identities	as	an	initial	step	(Hanavan	et	al.	2015,	Pontius	et	al.	2005ab).	These	

studies	and	others	have	also	documented	the	reliability	of	remote	sensing	indices,	used	in	a	regression	

framework,	for	detecting	crown	health	declines	at	the	landscape,	tree	and	leaf	level	(Pontius	et	al.	2005	

ab).	We	currently	have	one	year	of	funding	to	conduct	a	greenhouse	study	to	differentiate	oak	wilt	from	

two	other	diseases	(bur	oak	blight	and	bacterial	leaf	scorch,	Xylella	fastidiosa,	which	is	not	yet	

established	in	Minnesota)	and	from	drought	under	experimental	conditions	using	spectral	data.	

Seedlings	of	bur	oak	and	northern	pin	oak	will	be	inoculated	with	the	causal	organisms	and	additional	

seedlings	subjected	to	drought	in	a	factorial	experiment	under	carefully	controlled	conditions.	In	this	

proposal	we	build	on	this	work	by	developing	methods	to	detect	oak	wilt	in	naturally	occurring	
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Figure	1.	Oak	wilt	has	characteristic	symptoms	and	patterns	of	damage	that	are	hypothesized	to	be	discernable	
“pre-visually”	and	statistically	differentiated	from	other	diseases	and	drought	at	multiple	scales:	1)	leaf-level,	2)	
canopy	level	and	3)	stand-level.	Oak	wilt	symptoms	also	manifest	themselves	differently	on	different	oak	hosts	
(Quercus	ellipsoidalis/Q.	rubra	vs	Quercus	macrocarpa,	because	the	different	oak	subgenera	have	different	
responses	and	vulnerabilities	to	the	disease.	The	schematic	provides	a	framework	for	considering	how	the	decline	
symptoms	vary	among	species,	between	diseases,	and	with	drought	relative	to	healthy	trees	at	the	three	scales.	
All	three	scales	will	be	used	to	detect	and	differentiate	oak	wilt	from	other	damage.	Activity	1	focuses	on	leaf-
level	and	canopy	scales;	Activity	2	focuses	on	the	stand	scale;	Activity	3	focuses	on	control	and	containment.	
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Figure	1.	Oak	wilt	has	characteristic	symptoms	and	patterns	of	damage	that	are	hypothesized	to	be	discernable	
“pre-visually”	and	statistically	differentiated	from	other	diseases	and	drought	at	multiple	scales:	1)	leaf-level,	2)	
canopy	level	and	3)	stand-level.	Oak	wilt	symptoms	also	manifest	themselves	differently	on	different	oak	hosts	
(Quercus	ellipsoidalis/Q.	rubra	vs	Quercus	macrocarpa,	because	the	different	oak	subgenera	have	different	
responses	and	vulnerabilities	to	the	disease.	The	schematic	provides	a	framework	for	considering	how	the	decline	
symptoms	vary	among	species,	between	diseases,	and	with	drought	relative	to	healthy	trees	at	the	three	scales.	
All	three	scales	will	be	used	to	detect	and	differentiate	oak	wilt	from	other	damage.	Activity	1	focuses	on	leaf-
level	and	canopy	scales;	Activity	2	focuses	on	the	stand	scale;	Activity	3	focuses	on	control	and	containment.	
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Approach:	Oak	wilt	causes	characteristic	symptoms	that	manifest	themselves	at	the	leaf	level,	canopy	

level	and	stand	level	(Figure	1).	We	hypothesize	that	changes	in	pre-visual	and	visual	patterns	of	leaf	

function,	chemistry,	pigment	composition	at	all	three	scales	will	be	useful	in	accurate	disease	detection.	

Previous	approaches	for	detecting	tree	insect	pest	damage	and	decline	diseases	have	clarified	the	need	

to	decipher	species	identities	as	an	initial	step	(Hanavan	et	al.	2015,	Pontius	et	al.	2005ab).	These	

studies	and	others	have	also	documented	the	reliability	of	remote	sensing	indices,	used	in	a	regression	

framework,	for	detecting	crown	health	declines	at	the	landscape,	tree	and	leaf	level	(Pontius	et	al.	2005	

ab).	We	currently	have	one	year	of	funding	to	conduct	a	greenhouse	study	to	differentiate	oak	wilt	from	

two	other	diseases	(bur	oak	blight	and	bacterial	leaf	scorch,	Xylella	fastidiosa,	which	is	not	yet	

established	in	Minnesota)	and	from	drought	under	experimental	conditions	using	spectral	data.	

Seedlings	of	bur	oak	and	northern	pin	oak	will	be	inoculated	with	the	causal	organisms	and	additional	

seedlings	subjected	to	drought	in	a	factorial	experiment	under	carefully	controlled	conditions.	In	this	

proposal	we	build	on	this	work	by	developing	methods	to	detect	oak	wilt	in	naturally	occurring	
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Figure	1.	Oak	wilt	has	characteristic	symptoms	and	patterns	of	damage	that	are	hypothesized	to	be	discernable	
“pre-visually”	and	statistically	differentiated	from	other	diseases	and	drought	at	multiple	scales:	1)	leaf-level,	2)	
canopy	level	and	3)	stand-level.	Oak	wilt	symptoms	also	manifest	themselves	differently	on	different	oak	hosts	
(Quercus	ellipsoidalis/Q.	rubra	vs	Quercus	macrocarpa,	because	the	different	oak	subgenera	have	different	
responses	and	vulnerabilities	to	the	disease.	The	schematic	provides	a	framework	for	considering	how	the	decline	
symptoms	vary	among	species,	between	diseases,	and	with	drought	relative	to	healthy	trees	at	the	three	scales.	
All	three	scales	will	be	used	to	detect	and	differentiate	oak	wilt	from	other	damage.	Activity	1	focuses	on	leaf-
level	and	canopy	scales;	Activity	2	focuses	on	the	stand	scale;	Activity	3	focuses	on	control	and	containment.	
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Figure	1.	Oak	wilt	has	characteristic	symptoms	and	patterns	of	damage	that	are	hypothesized	to	be	discernable	
“pre-visually”	and	statistically	differentiated	from	other	diseases	and	drought	at	multiple	scales:	1)	leaf-level,	2)	
canopy	level	and	3)	stand-level.	Oak	wilt	symptoms	also	manifest	themselves	differently	on	different	oak	hosts	
(Quercus	ellipsoidalis/Q.	rubra	vs	Quercus	macrocarpa,	because	the	different	oak	subgenera	have	different	
responses	and	vulnerabilities	to	the	disease.	The	schematic	provides	a	framework	for	considering	how	the	decline	
symptoms	vary	among	species,	between	diseases,	and	with	drought	relative	to	healthy	trees	at	the	three	scales.	
All	three	scales	will	be	used	to	detect	and	differentiate	oak	wilt	from	other	damage.	Activity	1	focuses	on	leaf-
level	and	canopy	scales;	Activity	2	focuses	on	the	stand	scale;	Activity	3	focuses	on	control	and	containment.	



PRODUCTS:	
Open	source	R	packages:	
	
• Spectrolab:	General	package	for	spectroscopy	in	
R.	Implements	functions	for	reading	spectra	from	
different	field	spectrometers,	processing	spectra	
(e.g.	smoothing	and	vector	normalization),	and	
visualization.		
https://github.com/meireles/spectrolab	

• Reconcile:	Implements	PLSR	and	Bayesian	Model	
Averaging	methods	to	convert	spectra	taken	with	
different	instruments.	
https://github.com/meireles/reconcile.		
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