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Background

* Foliar and canopy spectra can characterize
sets of traits, which we can use to understand
vegetation function and diversity.

* Measurement of these traits at only one point
in time and observation geometry limits our
ability for vegetation monitoring and
understanding.




Motivation

* There is a distinct need to use UAV-based
monitoring to enable:
— ‘Just-in-time’ or ‘right-time’ measurements
— Repeated observations
— Flexible spectral and spatial resolution observations

— Field and stand scale measurements

* Aircraft and satellite measurements may not exist
(and aircraft monitoring may not be feasible or
cost effective)
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Sensor power. Networking satellite and airborne remote sensing with in situ sensing will allow changes in many elements of

biodiversity to be tracked over time. o
Sensing biodiversity

Woody Turner (October 16, 2014)
Science 346 (6207), 301-302. [doi: 10.1126/science.1256014]



Spectral Measurements of Traits
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Trait values (hence, spectra) vary with environmental variation.
Different genotypes of a species may have different trait/spectral
responses to environmental variations (e.g. change in photosynthetic
efficiency, leaf characteristics, biomass, yield, stress response).
Traits/spectra vary over the course of a day and/or a growing season




Traits of Interest to Monitor

* Nitrogen

* Chlorophyll * Chlorophyll

* Leaf Mass per Area (LMA) Fluorescence

* Lignin * Photosynthetic Capacity
e Sugars, carbohydrates e Stress/water status

* PRI (~pigments, NPQ) * Disease

* Secondary Metabolites * Genotype

e Other minerals * Phenotype

All are important to vegetation function, CO, uptake,
productivity, yield and/or physiology.

Primary Measurements and Technical Components




Spectra and Traits with Seasonal Dynamics
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Traits/Spectra with Diurnal & Seasonal Dynamics
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“Photosynthesis” from ESA/FLEX final report, 2015.
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and fluorescence (P. Campbell, 2015).
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The project involves
reflectance across
400-1000 nm, but also
narrow interval
spectroscopy for
chlorophyll fluorescence.

Top image from Uwe Rascher, downloaded from http://www.esa.int/spaceinimages/Images/2014/02/Fluorescence_from_different_vegetation

Primary Measurements and Technical Components
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PROJECT GOALS

Our goal is to produce in 2 years (June 2015 -
June 2017) science-quality spectral data from
UASs suitable for scaling ground measurements
and comparison against airborne or satellite
Sensors.

We will develop protocols and a workflow to ensure that VNIR
measurements from UAS’s are collected and processed in a
fashion that allows ready integration or comparison to NASA
satellite and airborne data and derived products (e.g. Landsat,
AVIRIS EO-1 Hyperion and future HysplRlI).




Objectives

Develop high spectral resolution UAS, capable of:

* Producing science-quality spectral data
— biochemical and physiological traits retrieval

* Employing an intelligent gathering scheme to
semi-automate:
— spectral data acquisition,

— processing workflows, and
— tasking and operation strategy

* Characterizing diurnal and seasonal cycles in
vegetation function
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Objectives

* Develop capability to depict diurnal and seasonal cycles in
vegetation function:

* accurate measurements of vegetation reflectance at high
spectral resolution

* high temporal frequencies and stability
* Spatial variability with high resolution
» Optimize data acquisition and workflow

* Demonstrate the capability to produce science-quality spectral
data from UAVs

* suitable for scaling ground measurements
* comparison to from-orbit data products

¢ Small UAV hyperspectral sensor-web, filling the gap betwees ¢

ground and satellite measurements

Next Generation UAYV Spectral Systems for Environmental Modeling
Pl: Petya Campbell, University of Maryland Baltimore County and NASA Goddard Space Flight Center

Near real time processing to re-plan during sortie.
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Approach:

* Test and validate measurements in-situ at well-characterized
sites
v’ Step | - Integrate spectrometers on moving field platforms
v’ Step 2 - Integrate spectrometers on UAS

* Develop Rapid Data Assimilation and delivery system

* Develop data gathering campaign strategy to optimize data
quality and yield
v' Leverage EcoSIS online spectral library

Co-Is/Partners:

Daniel Mandl, NASA/GSFC; Philip Townsend, University of Wisconsin-Madison;
Robert Sohlberg, University of Maryland; Lawrence Ong, NASA/GSFC-SSAI;
Vuong Ly, NASA/GSFC; Lawrence Corp, NASA/GSFC-SSIA; Patrice Cappelaere,
Vightel Co.; Jyoteshwar Nagol, UMD; Clayton Kingdon and Felix Navarro,
University of Wisconsin-Madison;Vincent Ambrosia, CSUMB.

Key Milestones Current
» Start Project 06/2015

* Test spectrometer flight configurations in-situ
on multiple moving platforms (e.g. tram/tractor)

* Flight Readiness Review and Approval

* Hexacopter flights with line spectrometers

v Step | manual reflectance retrieval
v Step 2 manual trait retrieval

7/2015-8/2016

5/2016
5/2016-12/2016

v/ Step 3 diurnal and seasonal variation in vegetation traits, semi-autonomous retrieval
* Hexacopter flights with imaging spectrometer 6/2016-5/2017

v Step | manual reflectance retrieval

v Step 2 manual trait retrieval

v/ Step 3 diurnal and seasonal trait variation, semi-autonomous retrievals

TRL =3

present —

CESTO

11/17/2015 AIST 14-0090

€arth Science Technology Office



Technology Evaluation Plan

 Testing at well characterized sites from alternate
platforms before UAV
* Currently, both imaging spectrometer and Piccolo
system are tested concurrently
v’ Stage
v' Tram
v Tractor
v' Then UAV

Piccolo and Nano-Hyperspec:
> > > > >

Test on tram/ Calibrate Onboard Ground-based Inflight decisions
tractor, etc. reflectance processing decisions

15



Test Sites

Use instrumented test sites with known
composition that are well-studied

Cedar Creek LTER, MN
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Spectral Instruments and Project Plan

First: Measurements with a spectrometer (one spectra at a time):

- Piccolo system
.| Dual Up- and Down- welling

% Ocean Optics spectrometers
- FLAME (400-900 nm @1 nm)
- QEPro (600-800 nm @ 0.2 nm)

ments with an imaging spectrometer:

53 t \\ Headwall Nano Hyperspec

2. %58 | - 640 x 640 pixels

- 400-1000 nm, 5nm spectral resolution
(FWHM with 20-micron slit)

- 480GB storage capacity

- Size (exclusive of GPS): 3" x 3" x
4.72" (76.2mm x 76.2mm x 119.92mm)

- Weight: less than 1.5 Ib. (0.68kg)

17




Technology/Measurements
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IPM Goals for This Effort

Real time acquisition strategy

v' Onboard data processing chain of hyperspectral data from
Piccolo Doppio spectrometers and Headwall Nano-hyperspec
Imaging spectrometer

v’ Data subsetting, optimization of acquisition parameters

v Real time campaign/way point adjustments based on
measurements and objectives (autonomous scheduling, real-
time detection for goal oriented abstraction)

Data product distribution



Near real time processing to re-plan during sortie.

Sensor Web Interface and
Dashboard Distribution

Intelligent
Collection

IPM Onboard
Processing

Biophysical Micro Mapping

Extend In-Situ Measurements
Spatial Scaling Analyses —
Next Generation Observation

Bridging gaps to connect in situ with airborne and orbital observations.
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Key Architecture Components
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Imaging Spectroscopy
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Flexible Acquisition Strategy

Start with:
Pre-programmed
flight paths and
acquisitions

Advance to:
On-flight optimization

e and path variation
N, ST TR
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Trait Retrieval Workflow

.. Spectrometer Onboard processing: Onboard

i . . .

: on UAS: decisions:

i

i Downwelling

: Irradiance Surf

| HIace Trait Retrieval L

| Reflectance Map Communication to

I 0

| ground station
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: . transmitted to ground station;

: Sensor Chemometric UAS redeployed by ground station

(- PLS : , g
Calibration ( ) TRL 6 Traits retrieved in flight and

Equations transmitted to ground station,
UAS redeployed autonomously

TRL - technology readiness level 2




Reflectance (x1000)
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Assessing Vegetation Traits

ool Vegetation spectra is
A related to a set of
traits.

We can build
equations to predict
those traits as a
function of the
spectra.
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Detection of SIF

* The solar induced chlorophyll
(SIF) fluorescence is 2-3% of the
total radiance detected

* High resolution spectrometers
needed (FWHM about 0.1-0.3 nm),
complex calibration techniques,
high SNR and a high spectral and
radiometric stability

 The impact of the platform
vibrations on spectrometer
stability?

* Impact of the atmospheric effect
should be considered
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Seasonal and Diurnal Measurements at
USDA OPE3, Greenbelt, MD

Considerations for SNR

- Light level and quality (e.g. PAR)
- Field of view

- View angle

Corn canopy, June 2015
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Measuring Solar Induced Fluorescence (SIF)
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Summary of Accomplishments

IPM concepts, components and architecture are identified

Flight authorization process — in progress, behind original schedule due
to changing FAA rules

Integration of both Piccolo and Nano-Hyperspec on moving platforms

We are using collaborative efforts and additional moving platforms,
such as tram and tractor as a workaround - in 2015 measurements from
telescopic pole, tower, tractor and tram

Data acquisition tests — retrieval of radiance, reflectance, retrieval of
traits; -- work in progress on optimization !

University of Wisconsin visit at GSFC in January and June, 2016
UAS flights and retrieval of spectra and traits during 2016 and 2017

Data sharing - within the team pilot data set for corn canopy, including
raw measurements, calibrated radiance, reflectance and derived traits —

ready products will be available via EcoSYS




Take Home Message

* New Generation (NG) spectral systems with flexible, automated
acquisition strategy are needed to capture the diurnal and
seasonal dynamics in vegetation traits.

* C(Calibrated imaging spectroscopy data is required at all spatial
scales, to bridge the gap and connect in situ with airborne and
space observations.

* This effort offers a first step toward the development of a small
science quality spectral UAS for flexible monitoring of vegetation
traits at the appropriate scale and rate.

* The NG Spectral UAS is needed for basic science and practical
applications, such as precision agriculture, forestry, ecology, bio-
diversity monitoring, and disaster relief during extreme climatic
natural and anthropogenic events.




