Spatial Responses to Climate Across Trophic Levels:
Modeling Plants, Prey, and Predators in the Western United States

David C. Stoner,
Joseph O. Sexton, Jyoteshwar Nagol, Kirsten E. Ironside,
David M. Choate, Kathy Longshore, David Mattson,
Thomas C. Edwards (PI)

NASA Biodiversity & Ecological Forecasting Team Meeting
Silver Spring, MD
May 4, 2016
Study area & partners

- 4 species
- 7 states
- 11 ecoregions
- 19 partners
 - Universities
 - Federal agencies
 - State agencies
 - Nonprofit organizations
 - Industry
Land-use changes
An ecosystem in flux

- **Climate**
 - Less precipitation
 - Earlier snowmelt
 - Longer growing seasons
 - More severe droughts

- **Land use**
 - Oil & gas drilling
 - (Sub-)urbanization
 - Agricultural expansion
 - Solar & wind farms

➢ *Habitat loss & fragmentation*
Goal: combine satellite imagery with *in situ* data to inform natural resource management

How do climate changes propagate through ecosystems?

- **Satellite observations**
- **Plant phenology**
- **Animal locations**
- **Habitat & demography**
Plant productivity & phenology: NDVI
MODIS Surface Reflectance
(daily, 500 m)
coarse spatial x fine temporal scale
Information loss with pixel size

Extracting plant-specific phenologies from mixed pixels

Mixed pixel Reflectance

UnMixing

Land-Cover Specific Reflectance

Land-Cover Specific NDVI

Evergreen-grass savannah

Plant productivity predicts herbivore abundance

$R^2 = 0.58$

Stoner et al. in prep.
Plant phenology predicts herbivore reproduction

Where can we grow deer in the future?

Plant phenology predicts herbivore survival

Adult females

```
Survival
0  0.2  0.4  0.6  0.8  1.0
0  2  4  6  8  10  12
```

- Green: High EOS NDVI
- Blue: Average EOS NDVI
- Red: Low EOS NDVI

Fawns

```
Survival
0  0.2  0.4  0.6  0.8  1.0
0  2  4  6  8  10  12
```

- Green: High TMAX, Long SHGS
- Blue: Mean TMAX, Average SHGS
- Red: Low TMAX, Short SHGS

…”Where can we grow deer in the future?”
Plant productivity predicts carnivore abundance

$R^2 = 0.60$

$R^2 = 0.58$

Stoner et al. in prep.
Conclusions

Ecological
- Climate changes propagate through ecosystems
 - Vegetation: productivity & phenology
 - Herbivores: abundance, demography & behavior
 - Carnivores: abundance

Technical
- Consistent, long-term records are key
 - Vegetation composition & structure
 - Landsat, lidar, radar
 - Plant phenology
 - MODIS & VIIRS
 - Plant chemistry / hyperspectral

Practical
- Managers need monitoring & forecasts
 - Gradual adoption of satellite data
 - Matching with GPS & population data
 - Strong need to grow research into satellite-based monitoring systems
Looking forward

- Economic impacts of wildlife
 - Wildlife-based economies
 - $150 billion / yr
 - > 600,000 jobs
 - ~ 1% of GDP
 - Agricultural & property damage
 - $5 billion / yr
 - Game species are conservation umbrellas

- The realities of land management
 - Agencies need to monitor and predict
 - Budgets not keeping pace with costs
 - Managers need systematic data and tools
 - Research
 - Monitoring
 - Communication