Connectivity modeling with Circuitscape

Kim Hall, The Nature Conservancy &
Ranjan Anantharaman, MIT & formerly Julia Computing

Download Circuitscape 5.0 from
download page on
Circuitscape.org

Download test data if you like...
Visit Circuitscape.jl on GitHub
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Session overview

Terrestrial connectivity modeling -- Kim
- Connectivity context & decisions
- Introduction to Circuitscape
- Resistance grids & workflow for conservation decisions ™ N
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Problem statement
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Questions & discussion

- New ideas and opportunities for using EOs & cross team collaborations
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Why Circuit theory? (from Dickson et al. 2019)

Connectivity is not just about corridors

* Need to think about it more diffusely, particularly in working or dynamic
landscapes: the matrix matters

* Connectivity is a dynamic process

 Redundancy is key - especially under changing land cover or climate

Circuit theory helps to, e.g.,:
* Quantify gene flow and redundancy over complex landscapes

* Prioritize pinch-points where connectivity might be lost sooner

 |dentify restoration opportunities and explore change scenarios

* Provide theoretical justification for our work protecting and reconnecting
landscapes.



Key project stages

1. Characterize Goals and Scope — what decisions do we want to inform?
. Identify and Engage Partners and Stakeholders

. Characterize ecology/response to barriers

. Select Modeling Approach(es) and Tool(s) and Data

. Develop Model Inputs (Resistance Grids)

. Model Runs

. Validate & Interpret Results; Communicate with maps

O N o U B~ W DN

. Incorporate into Decision-Making



Connectivity of what? Landscapes, species’ habitats....

Gene flow & other ecological processes (fire, disease
transmission)

Animal movement

Structural connectivity: a measure of habitat
permeability based on the physical features and
arrangement of habitat patches, disturbances &
barriers...more of landscape feature.

Functional connectivity — incorporates species
movement characteristics; based on field
observations
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Figure 2. Number of peer-reviewed studies of 5 types
that used Circuitscape from 2009 to 2017 (several
species, 2-10; many species, > 10; not species specific,
specific species not targeted. other, models compared
or physical processes modeled [e.g., bydraulic
resistance in rools [Zeppenfeld et al. 2017]).

From Dickson et al. 2019



Resistance
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Resistance surface: a grid in which each cell value reflects the landscape
permeability (structural connectivity) or the energetic cost, movement
difficulty, mortality risk, and/or avoidance behavior associated with
species movement through that cell (functional connectivity).

Also commonly used for least-cost path analyses - what's the shortest path
between patches when travel is weighted by resistance score?
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Resistance:
Data preparation by resistance type

Besistanew | | FResisun

. Energy cost / Movement difficulty:
Includes base habitat layers

Il. Mortality risk:
Physical footprints of anthropogenic landscape

features

Il1l. Avoidance:

Densities / inverse Euclidean distances of
anthropogenic features

........




~== Resistance: Energy Cost and Movement Difficulty
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~== Resistance: Energy Cost and Movement Difficulty




Resistance: Mortality and Risk Avoidance
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NLCCs (Corridors) :
Each defined by
cumulative
movement costs
relative to its
respective LCP.

‘Linkage zone':
Broad belts of land
with relatively
greater habitat
continuity. (Here,
NLCCs = linkage
zones)

Framework for

Circuitscape runs
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Pinch-points:

Locations of highly
constricted (and
thus strong)
current flow

Network severance |
possible withloss ., 1
of small amount of *) ¢
movement habitat (. |

Potential areas for
protection from
habitat loss or
degradation




Cumulative current flow density
(Amps/cell)

.- High: 1.2

Low:0
Highways
Railways

B Protected Areas

Dutta et al. (2015)
combined Circuitscape
with least-cost paths
to map pinch points
within corridors
connecting protected
areas for tigers in
central India.

High current areas =
priorities for
protection



Landcover/Landuse
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Fig. 2 Different data layers used to derive resistance map. Protected
areas are shown in green. a landuse/landcover map, b major roads and
railway lines, ¢ population density, d surface ruggedness (not used in

Transportation
infrastructure

== Highways
——Secondary Routa
= Railways
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Resistance
(unitless)

oy High : 89.2
—— Low:1
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the model, but notice the high correspondence between ruggedness
and forest cover), ¢ combined resistance map (from the weighted
scheme) (color figure online)

Table 2 Resistance values used for this study

Layer (weight) Category Resistance score
LULC (D.44) Forest 0
Degraded 2
Scrub 2
Barren [
Water (&
Agriculture 49
Settlement 100
Road (0.13) Absent 0
Other Roads 50
Highways 100
Population density (0.33) Absent 0
Low 30
Mod 6l
High 100
Railway (0.09) Absent 0
Present 100

Resistance values were derived, rescaled, and standardized from
published sources (Wikramanayake et al. 2004; Areendran et al.
2012; Rathere et al. 2012). After calculating resistances, we added |

to account for Euclidean distance
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Table 2 Resistance values used for this study

Layer (weight) Category Resistance score
LULC {0.44) Forest 0
Degraded 2
Scrub 2
Barren [
Water (&
Agriculture 49
Settlement 100
Road (0.13) Absent 0
Other Roads 50
Highways 100
Population density (0.33) Absent 1]
Low 30
Mod 60
High 100
Railway (0.09) Absent 0
Present 100

Resistance values were derived, rescaled, and standardized from
published sources (Wikramanayake et al. 2004; Areendran et al.

Constraint — had to

2012; Rathere et al. 2012). After calculating resistances, we added |
to account for Euclidean distance

coarsen habitat data
from24to72 m




Gray & Dickson (2016) mapped fire
connectivity on a cheatgrass- invaded
landscape in northern Arizona (68
patches — “all to all” runs)

Yellow areas are connectivity pinch
points that can be targeted for
placement of fuel breaks.

NDVI from spring Landsat imagery was
used to identify cheatgrass (tan).




Anthropogenic water catchments

e  Natural water sites

N

A 15 km buffer
E Sonoran Desert

l:] Study area spatial calculation buffer

New placement areas for catchments

— O

Drake et al. (2015)
combined Circuitscape with
least-cost paths to evaluate
how to site new artificial
water sources for mule deer
(economically important) in
the Sonoran Desert in
places that would not
promote spread of invasive
bullfrogs under current &
future climate scenarios.

Runs required 4-8
weeks on a Janus
supercomputer at
Texas Tech; coarsened
data to improve speed



~ Current flow rate

Ecosystem services: Biocontrol

Koh et al. 2013 predicted the abundance
of native insects that predate on
agricultural pests in northwestern
Indiana using graph & circuit-theory
metrics.

Native tallgrass prairie, restored prairie,
and semi-natural areas are the nodes —
they were found to facilitate the
movement of native predators.
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Great Plains

Landuse
:] Grassland
|:] Pasture/Hay
D Shrub/Scrub
Barren Land
- Decidous Forest
- Evergreen Forest

[:_] Mixed Forest
[ ] cuttivated Crops
Corn and Soy Agriculture

[:] Open Space Developed
- Low Intensity Developed
- Medium Intensity Developed
I High intensity Developed
- Emergent Herbaceous Wetlands
- Woody Wetlands

Map I‘r;duccd by TNC Nerth Americab Science 2018
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Oil and Gas Well Density

[ 1 1-2wells per square mile (+0.2)
[ ] 2- 4 wells per square mile (+0.4)
[T 4 - 8 wells per square mile ( +0.6)
I & - 16 Wells per square mile (+0.8)
- >16 Wells per square mile (+1)

Inputs to
resistance grid for
landscape
structural
connectivity

Roads, railroads
Wind turbines
Large water
bodies....

Many tiers of
scoring
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Circuitscape

Break the area into square tiles
that incorporate a 50% buffer

Run Circuitscape from “wall to
wall”

Change direction — do all four
Sum results
Do next tile

Re-assemble and edge match



How are these maps different from corridors/least cost path?

Connecting discrete patches Continuous flow (wall to wall)

- Core Protected Areas \ 2

N

_— o Regicnal Flows
e N site corridor value High :
ol s What are you connecting? I High Current Flow
dentifvine Corrid ] Protected In this case easy to underestimate -
entryin orriaors amon arge rrotecte
ying ) & Lare “value” due to lack of protected [ Average Current Flow
Areas in the United States m
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Belote et al. 2016. Plosl
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Regional Flow

- Far above average (>2 SD)

- Above average (1to 2 SD)

- Slightly above average (0.5 to 1 SD)
[ | Average (0.5t0-0.5 SD)

l:] Slightly below average (-0.5 to -1 SD)
- Below average (-1 to -2 SD)

- Far below average (<-2 SD)
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Resilient and Connected Landscapes — a resource for conservation planning
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The network
covers 23%
of the region
(shown here)
and 75% of
the resilient
sites.
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Resilient and Connected Network

I Climate Corridor

I Ciimate Corridor Confirmed Biodiversity
[:] Climate Flow Zone

I Climate Flow Zone Confirmed Biodiversity
I Resilient Confirmed Biodiversity

I Resilient Secured

[ | Resilient Only




CURRENT FLOW

Omniscape — moving window version
Circutscape (pixel by pixel), which allows
source strength surfaces as well as
resistance surfaces.

McRae et al. 2016, cartography by Aaron Jones



New ideas for functions, inputs &
collaborations?

- Forest structure

- Phenology

- Al applications with Azure (credits to share!)
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Brad McRae & Charlie Lawler et al.

Credit: T. N. McRae 2015 by D. ‘
Majka e
Brad McRae Fellowship for Innovation in Conservation Fund

www.AZFoundation.org




Connect to part 2 --- Ranjan’s slides



