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Who, Why, How, What

 Our goal is to use space-based, high resolution spatial and 

temporal observations of the ocean to predict zooplankton and 

grazing dynamics in relation to mesoscale eddy features.
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Powell and Ohman, 2015 Prog. Oceanogr. 



Bluefin Tuna spawning locations do not co-occur 

with annual mean phytoplankton biomass

Observed locations of 

Atlantic bluefin tuna –

spawning thought to 

occur April, May, June

Block et al, 2005 Nature

Annual average 

surface chlorophyll



Observed locations of Atlantic 

bluefin tuna – spawning thought to 

occur April, May, June

Block et al, 2005 Nature

Long term mean 

March frontal structures

Bluefin Tuna spawning locations do co-occur with 

frontal positions. 

Belkin et al, 2009 

Progress in Oceanogr.



Who, Why, How, What

Test approaches on remote sensing 

to estimate Zooplankton biomass 

and grazing in different size classes

Characterize 

errors in 

approaches

Surface 

mass 
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ecological 

model 

equations 

Model simulation of 
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quantities that can be 

determined from 
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Temporary Truth

Machine 

Learning

Validate 

using in situ 

data

Siegel et al. 2013 Glob. Biogeochem. Cycles

Theoretical 
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size scaling

Apply to 

California 

Current 

region

Apply to 
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Mexico 

region

What is the role of fronts and 

eddies in mediating trophic 

transfer from plants to fish



Remote sensing and model 

inputs

 Large and Small phytoplankton biomass (Graff et al 2015, Deep Sea Res. 
+ Mouw and Yoder, 2010 J. Geophys. Res.)

 Large and small phytoplankton net primary productivity (Silsbe et al. 
2016, Global. Biochem. Cycles. + Mouw and Yoder, 2010 J. Geophys. Res.)

 Sea Surface Temperature

 Euphotic Depth (light penetration depth)

➢ Mixed layer depth



SeaMap Dataset                   Gulf of Mexico NEMURO Model 

(Stukel and Shropshire)

The NEMURO model (our “truth”) simulates reasonable 

zooplankton biomass in the Gulf of Mexico

Modelled biomass fraction 

and growth rates are 

consistent with observations 

in the Gulf of Mexico

(Stukel and Shropshire)



SeaWiFS Chlorophyl-a

The model simulates reasonable chlorophyll-a. 

Thus, we have a reasonable variance for tuning 

the zooplankton algorithm.

NEMURO Model 

(Stukel and Shropshire)



4 methods for estimating zooplankton biomass

1. Slope of the biomass spectrum – ecological theory.

2. Siegel et al mass balance algorithm –
𝑑𝑃

𝑑𝑡
=

𝑁𝑃𝑃

𝑍𝑒𝑢
− 𝐺𝑟𝑎𝑧𝑖𝑛𝑔 −𝑚𝑜𝑟𝑡𝑎𝑙𝑖𝑡𝑦 − 𝑠𝑖𝑛𝑘𝑖𝑛𝑔 − 𝑒𝑛𝑡𝑟𝑎𝑖𝑛𝑚𝑒𝑛𝑡

3. NEMURO model inversion –

ODEs for state variables. Invert for zooplankton given Ps, PL, NPP_PS, NPP_PL, 

dPS/dt, dPL/dt

4. Machine learning approaches

e.g. GLM, Neural Net

Kishi et al, 2011



Grazing on Large Phytoplankton – Equilibrium Method (dp/dt=0)

The models for Zooplankton grazing are sensitive to 

physics (entrainment) and biological disequilibrium

Inverted Model Siegel Model-
Entrainment Included

Siegel Model-

Entrainment excluded



Grazing on Large Phytoplankton 

Inverted Model Siegel Model-
Entrainment Included

Siegel Model-

Entrainment excluded

𝑑𝑃

𝑑𝑡
=

𝑃2 − 𝑃1
∆𝑡

Grazing on Large Phytoplankton is more accurate 

with inclusion of time dependence



Grazing on Large Phytoplankton – (dp/dt= function of NPP)

Grazing on Large Phytoplankton can be more 

accurate when using empirical relationships for 

time dependence 

Inverted Model Siegel Model-
Entrainment Included

Siegel Model-

Entrainment excluded

Reference model 



Grazing on Large Phytoplankton is reasonably 

estimated by both the Siegel (FW)  and Nemuro

inversions (Inv).  



Machine learning techniques are very effective, 

but give little mechanistic information on the 

causal links or temporal variation. 



Takeaway

 In the Gulf of Mexico, conditions are typically close to equilibrium 
except where Net Primary Production is high (particularly large 

phytoplankton). 

 Estimating entrainment typically degrades results in stratified 

regions, (consistent with Stukel et al, 2017)

 Simple Siegel food web model works as well as the more complex 

model for grazing rate, but does not yield the full complement of 

outputs available to an ecological model inversion. 

 Machine learning approaches could be locally powerful where the 

answer is more important than the underlying mechanisms… and 

where sufficient data exists for training



Large Phyto + SSTgradientSmall Phyto + SSTgradient mgC m-3

SST +SSTgradient

Large scale patterns of Phytoplankton Biomass 

sometimes relate to fronts … but not always.



SST +SSTgradient

NPP Large Phyto + SSTgradientNPP Small Phyto + SSTgradient

mgC m-2day-1

Large scale patterns of Phytoplankton Production 

sometimes relate to fronts … but not always.



Large Z + SSTgradient

Small Z+ SSTgradient
mgC m-2 

day-1 Predatory Z + SSTgradient

Large scale patterns of Zooplankton sometimes relate to 

fronts … but not always.



SST +SSTgradient

Deep 

thermocline -> 

less nutrient 

transfer to 

surface

Shallow 

thermocline -> 

Nutrients closer 

to surface

Hammerhead frontal structure results in two eddies 

with differing dynamics, but likely similar initial 

conditions.



SST +SSTgradient Large 

Phyto+SSTgradient

NPP Large Phyto  

+SSTgradient

Small 

Phyto+SSTgradient

NPP Small Phyto  

+SSTgradient

mgC m-3 and mgC m-2day-1



SST +SSTgradient

Small Z+SSTgradient Large Z+SSTgradient Predatory Z+SSTgradient

mgC m-3 and mgC m-2day-1



SST +SSTgradient

Large Z grazing on Small 

P +SSTgradient

Large Z grazing on 

Small Z +SSTgradient
Large Z grazing on Large 

P +SSTgradient

mgC m-3 and mgC m-2day-1



Next Steps

1. Characterize sensitivity of the methods to errors in the input data, e.g. 

MLD variability.

2. Characterize sensitivity of the methods to the temporal interval of the 

data. 

3. Integrate Individual based zooplankton model into the methods to 

include behaviors such as diel vertical migration 

4. Apply methods to other regions with data – e.g. California Current. 

Potential applications
1. Parameterize models as a function of underlying seascapes / biomes

2. Use for data assimilation  and prediction as a complete ecosystem 

solution
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