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Advance bird
diversity monitoring
from next-
generation and
existing Earth-
observing satellites

Soundscapes to Landscapes (S2L)

/

NASA-funded, 3-year
Implementation

Approach Phase, Sonoma

1.
2.
3.

. ) i _ County, California
Citizen scientists collect sound recordings

Bioacoustic analysis used to detect birds at sites by their calls

Bird species distribution modeling (SDM) with remote sensing
predictors (spaceborne lidar, hyperspectral, multispectral)

Use SDM maps for biodiversity monitoring and conservation

Explore relationship between soundscapes, biodiversity and
forest structure (i.e., GEDI)



Species Distribution Modeling
(SDM)

Need in situ data

Response\(e.g., bird species)
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predictors (e.g., elevation, precipitation, solar insolation)

Remote sensing predictors - vegetation structure, chemistry, &
phenology related to habitat

Adapted from He et al., 2015



In situ animal diversity data through
soundscape analysis
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Figure 2. Spectrogram of an 11-second recording of the dawn chorus at the La Selva Biological Station, Costa Rica. Birds and
insects are creating a variety of sounds from 1 kilohertz (kHz) to some even above 12 kHz. There is considerable biophonic
activity between 4 and 6 kHz, with the loudest sounds occurring 1 second into this recording. Crickets are stridulating at 4.7, 5.3,
and 6.0 kHz. Note that raindrops falling from the tropical canopy can be heard (sounds below 2 kHz), an example of geophony.

Pijanowski et al., BioScience 2011



Birders




Recording Soundscapes

R el Je  Each site: 3-4 days, with
1-minute recording every 10

AudioMoth: Evaluation of a smart open acoustic device for m | N utes
monitoring biodiversity and the environment

RESEARCH ARTICLE | Open Access @ ®

Andrew P. Hill &%, Peter Prince, Evelyn Pifia Covarrubias, C. Patrick Doncaster, Jake L. Snaddon, @ Search «t! LTE 11:29 PM
Alex Rogers
First published: 13 December 2017 | https://doi.org/10.1111/2041-210X.12955 | Cited by: 1 : z s
This survey is for collecting field data as part of the NASA-
funded Soundscapes to Landscapes (52L) bird diversity
H H mapping project. For information, contact: Dr. Matthew
i AU d |O M Oth IS < $80 Clark, matthew.clark@sonoma.edu
‘.!\'.“\'w‘ - s ) A PR 28 4
L4 Pr‘og ramma b I e Name of person entering data
Enter first and last name
* Uses 3 x AA batteries

* Size is 58 x 48 x 15 mm o
» Simple on/off switch =

Recorder ID *

Select the ID number from the sticker with the SSU and Point
Blue logo on the unit.

Sample Number *
Enter -99 if not known.




Field Campaigns - March to June

To date, we have collected over 206,000
minutes of recordings (~3,433 hours)

2019 Field Season Project Total Public lands
(as of 5/15/2019) (since 3/01/2017) AudioMoth deployment

mostly done by student

190 unique sites visited 401 unique sites visited : :
interns & community
volunteers

555 CS field work hours 1329 CS field work hours

(513,387) (532,082)

Private lands

* Mail Deploy

* Classroom Deploy
* Cluster Deploy

; > % >
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A Arbimon Il - Soundscapes2land: X

< C & https://arbimon-dev.sieve-analytics.com/project/soundscapes2landscapes/analysis/patternmatching/184 & % 0O Q) '
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Classifications

Pattern Matching

Validate as:

Soundscapes {"threshold":0.2,"N":1} ' » Not Present -
i 1671 matches (0 present, 0 not present, 1671 Previous | 1 ® Clear =
. unvalidated)
2.00s 2206Hz

¢ s2101_170414_028150074_1300

Arbimon pattern matching and citizen science
interface - under development through contract
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Record flemolabirdSonas Collection Statistics
Record female bird song:

x(:ox)or& @'GI)@@ 459466 Aecordings

[ (=] loosa  Species
Verezuelan Trowplal {icterus Icterus) - Fumale. 11184 Subspocies

5248 Recordists
7318:56:16 Recoeding Time
344317 Recordsto GBIF ¥

More..

Deep learning using Convolutional
Neural Networks (CNN)

Latest New Species
Dark-sided Thrush
Black-bellied Tern
Papyrus Canary
Scaly Thrush

What is xeno-canto? ::-'W -
Recordings analyzed as waveforms SPATEE
= Deep learning needs a large
\ 8 sec window j

training datasets (i.e., labeled
bird calls)

= Collected clean audio data
from Xeno-Canto

Y

Ambient Noise

Data Augmentation‘

@ = Data augmentation
* Adding noise
Noisy 8 sec window . Speed audio up/down
@ * QOverlay multiple bird calls

= Data augmentation is critical

for generalization and
1D CNN — Classes (bird species present) robustness

UCMERCED

Shrishail Baligar & Dr. Shawn Newsam, UC Merced N Ry ORI


https://www.xeno-canto.org/

CNN Model Details and Evaluation

Input:180,000
samples.

8.16 sec 1D

Convolutional
layers

Fully-connected
dense layers

Bird call
classification

Shrishail Baligar & Dr. Shawn Newsam, UC Merced

Evaluation

Initial results: 84%
accuracy for 10 bird
species classes

Now training for 30 bird
species using over 33
hours of augmented
audio

S2L soundscape data will
be used for tuning the
model

UCMERCED

UNIVERSITY OF CALIFORNIA



SDM Using Existing Bird Diversity /n Situ Data

Collaborators: Dr. Leo Salas (Point Blue Conservation Science); Pat Burns, Dr. Scott Goetz (Northern
Arizona Univ.); Dr. Steve Hancock (Edinburgh), David Leeland, Wendy Schackwitz (Citizen Scientists)

Sonoma Veg. Map Herbaceous Wetland
Forest Lifeform I Mixed Convfer and Hardwood Forest
B Agrculture Non-native Forest

Aguatic Vegetation Non-native Shiub

Barrren and Sparsely Vegetated Il Riparian Forest

B Conifer Forest I Riparian Shrub

I Oeveloped Salt Marsh

B Forest Shver Shiub 0 5 10
I Hardwood Forest N Viater

Herbaceous

Bird data compiled from California Avian Data
Center by Point Blue Conservation Science for water
years 2006 to 2015

o Point Blue, Breeding Bird Survey (BBS), &
eBird
o Avg. 174 presence, 538 absences per species

S2L will fill
in data gaps
with
soundscape
-based bird
a, data

High Density Obs. Zones -

All Species Obs. 2006 to 2015

& Sonoma Lidar 2013

Vegetation Height (m)
High : 5

|

® SDMs predict probability of
occurrence for 25 bird species from
different habitat associations (oak
woodlands, conifer forest, riparian,
grassland, urban, generalist)



Canopy Structure from Simulated GEDI Metrics

Simulation of GEDI L2 product
waveforms from airborne lidar
data (Hancock et al., 2019)
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Simulated GEDI waveform
and canopy structure metrics



Productivity, p

Other Predictor Data

Phenology Metrics

® MODIS NDVI Dynamic Habitat Indices
(DHI): cumulative, minimum, variance  USGS Basin Characterization Model

® Additional MODIS NDVI metrics: (BCM)

seasonal difference, median,
maximum

® Used Google Earth Engine ¢
® Aggregated all to 250, 500, and
1000 m grids °
— Grmmiend " Equations
A DHI Cum = 3p,
‘.‘ 1 DHI Min = min(p,)
| T DHI Med = med(p,)
P‘m&./"" ‘\,a‘ .“‘; DHI Max = max(p,)
A ! DHI Var = var,
_m“,,..f/‘ \\:‘__ DHI seasDiff =(pn%ed(pju,,g -
. > med(pnov)

Jan, 01

28
Time periods, t §g
Q

Jan, 08

http://silvis.forest.wisc.edu/data/DHIs

Similar to Radeloff et al., RSE 2019

Hydro-climate data for California,
270 m (Flint et al., 2013)

Tmin, Tmax, precipitation, actual
evapotranspiration, climate water
deficit

Auxiliary variables

Elevation

Distance to stream/river
Distance to coastline
Distance to road

Variance Inflation Factor (VIF) used to remove correlated
variables before SDM
55 variables - 23 variables




SDM Performance

Number of times model perfomed best

250M 500M 1000M

EWA - Ensemble Weighted Average s £1/A - s T e e B [ e B

XGB - Extreme Gradient Boosting XGB A _ —

SVM -Support Vector Machine SVM ) i — ; —

RF - Random Forest L RF; Ses=s==== E=E==E

MLPE - Multilayer Perceptron Ensemble = mupe | o | o - - |

KNN - K-nearest neighbor KNN - " svm
GLMN - Elastic-Net Reg. Gen. Linear Models ~ GLMN7 i s sy | o s s s s | W xcB
Boo - AdaBoost M.1 Boo ]

B ewa

1] 1{I)0 260 S(I)D 460 {I?l 160 2&“] 3[I}G 460 il) 160 260 3[5[3 460
No. of times Highest AUC (25 species * 100 iterations)
For all species and bootstrap iterations the number of times an individual model was the best performer based on AUC

EWA - AUC vs TSS for all Species
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TSS = true skill statistic AUC
AUC = Area Under the Curve Points correspond to median

Bars correspond to Interquartile Range



Variable Importance

Aggregated variable importance (DSA method) by Habitat Specialization (including all AUC values)
Variable Group - Can. Struct. . Climate . Phenology . AUX

Grass
Urban

20~ \ 500M 1000M
= Percent Available
S
-§ Conifer
E Oak
f‘; Shrub
3 Riparian
0
m
T

0 0.25 0.5 75 1 0 0.25 0.5 0.75 1 0 0.25 0.5 0.75 1
Aggregated Importance Fraction
100 iterations and & models

Aggregated variable importance (DSA method from rminer) by predictor
variable group and bird species habitat specialization. Percent Available is
percentage of variables available from a group (Canopy Structure,
Climate, Phenology, Auxiliary) relative to the total number of variables
after Variance Inflation Factor filtering (n=23)



Example maps from SDM

Acorn
Woodpecker

STJA Probability

Value
- High: 1

ACWO Probability

Value
- High: 1

Low: 0 Low: 0

0 5 10 20
e Kilometers

0 5 10 20
e wemmm Kilometers

California
Tohwee

OATI Probability CALT Probability

Value Value
- High: 1 High : 1
Low: 0 . Low:0
0 5 10 20 0 5 10 20
Kilometers e Kilometers

Example SDM outputs of probability of occurrence from 2 years of simulated GEDI at 250 m spatial
resolution. Bird data were from existing eBird. Breeding Bird Survey, and Point Blue data.



Soundscapes, Avian Diversity =

rhReal74 1

rhReal50 1

and Forest Structure

midCanopy 1

Initial results suggest GEDI FHD |
Forest Structure Biodiversity simulated forest structure can
be used to predict certain
acoustic indices. These indices
have been shown to reflect
biodiversity. We can map GEDI-

upperCanopy 1

nivi2.1 4

trueground {

rhReal24 4

modelled acoustic indices to cover I
understand avian biodiversity goundsiope] [
across Sonoma County. mreaz{ [}

2 0 2 4

Variable Importance

Predicted Average AEl using Random Forests and GEDI metrics

R2 = 0.44677 , Intercept = 0.14105, Slope = 0.49016 , P = 0.00067313

0.6 i
AEl = Acoustic Evenness Index .
205  (Villanueva-Rivera et al., 2011)
&
g .
(&)
204
|
3
ource: https://www.audubon. org/field-guide/bird/lesser-goldfinch#photo1 Q:
el
. . . £os
Modeling the relationship of forest structure and =2
.. . )
soundscapes (acoustic indices) to understand a
0.2

biodiversity

0.1 0.2 0.3 0.4 0.5
Actual Acoustic Variable

Collin Quinn, Northern Arizona University - see poster!



Thank you




of human

natre

International journal of science

Species at risk

3 A

More than 40 0/0 of Almost 33% of More than a 1./3 of all

amphibian species reef-forming corals marine mammals

-

5 main drivers of species loss

‘BIODIVERSITY

One million species g @~ © ,,

face extinction v

Changes in land Direct exploitation

Landmark United Nations report finds that human activities and bk tke of organisms Climate change
threaten ecosystems around the world. Humans have altered 75% of land and  |n 2015, a third of marine  Global warming has already impacted
: 66% of marine environments since stocks were being fished at  almost half of threatened mammats

pre-industrial times unsustainable levels and one quarter of birds

2019 Global Assessment by the >
Intergovernmental Science- (4] y 8

Policy Platform on Biodiversity 9

. Pollution Invasive alien species

a n d ECOSYSte m Se rVICeS ( I P B ES) Marine plastic pollution has increased The numbers of invasive alien
tenfold since 1980, with an average species per country have risen by
300-400M tons of waste dumped about 70% since 1970

annually into the world's waters




