Integrating Remote-Sensing and Ecological Forecasting into Decision-Support for Wetland Wildlife Management and Ecosystem Services in the Central Valley of California: Optimizing Across Multiple Benefits (NNX17AG81G)

Matthew E. Reiter (Point Blue) and Kristin Byrd (USGS)

NASA Biodiversity and Ecological Forecasting Team Meeting May 21 – 23, 2019

Conservation science for a healthy planet

Black-necked Stilt in Central Valley Rice

Project Team

Point Blue

Matt Reiter - Pl Sam Veloz Doug Moody Marin Magana Nathan Elliott Erin Conlisk

USGS

Kristin Byrd - Pl Tamara Wilson Cindy Wallace Elliott Matchett Mike Casazza Brian Halstead Lorrie Flint Austen Lorenz Michelle Stern

The Nature Conservancy

Mark Reynolds Greg Golet

USFWS

Claudia Mengelt Rachel Esralew Kara Moore-O'Leary

NASA

Jay Skiles

Central Valley has <10% wetlands remaining

Data Sources: Central Valley Historic Mapping Project, GIC, Chico State; Modern Wetlands, Ducks Unlimited & Central Valley Joint Vent Map Design: Ducks Unlimited, Western Regional Office

Wetland habitat is dynamic – driven by weather and management

Reiter et al. 2015

Where to put water and when to maximize multiple benefits?

Coordinated Data-Driven Decision Support Optimizes Water Management to Achieve Multiple-Benefits for today and 100 years from now

Biological Targets Waterfowl Shorebirds Giant Garter Snake

Ecosystem Service <u>Targets</u> Groundwater Recharge Freshwater Biodiversity

Objectives and Decisions

Within-year forecasts of biological and ecosystem services targets

- TNCs dynamic conservation program BirdReturns
- Annual wetland water management planning (Federal, State, Private)

Long-term forecasts (50-100 years) of biological and ecosystem services targets under multiple scenarios

- Strategic implementation of Central Valley Joint Venture habitat goals
- Habitat restoration potential maps for USFWS

Our Workflow

Water

Open Water Data 2000-2018 (Landsat 5 & 8)

Spatial Covariates

Reiter et al. 2018

Hotspots of Change in Drought

Habitat Quantity / Quality

Landsat 5 & 8 2007-2017

Wetland Productivity

Crop Productivity

Spatial Covariates

Swamp Timothy: 32,369 ha ± 2,524 ha Watergrass/Smartweed: 13,012 ha ± 1,384 ha

Significantly more swamp timothy and less productivity in critical drought years across the Central Valley, public and private lands

Plant Area

Productivity

What are the key drivers?

- Bird data (Point Blue structured surveys/filtered eBird)
- Snake capture data
- Boosted Regression Trees
- Identify key drivers for forecasting
- Assessed Real-Time versus Long-Term Average
- Drought vs. Non-Drought Years

NASA

Suitability varies by species

Suitability is seasonally dynamic

Suitability is dynamic among years

Species Distribution Models

Giant Garter Snake

Covariates

Average (2001-2017) of flooding for two week periods and the period March 1-Oct 15

Fraction of landscape that is growing rice, fallow rice and post-harvest flooded rice

Density of canals at 300m, 1000m, and 3000m

Density of streams at 300m, 1000m, and 3000m

Average and standard deviation (across 2001-2016) of day of year of maximum greenness

Average and standard deviation (across 2001-2016) of maximum NDVI

Variable Importance

Species Distribution Models

Forecasting Water – Within Year

Driver covariate forecasts

Forecast of where to put water to achieve objectives
Apr 1,

 $July_{t} - April_{t+1}$

Model forecast accuracy varied by month... wetter months were harder to forecast

Accuracy \rightarrow 80-90%

Covariate	Time Period	Source	Importance	_
10-year average water (pixel)	10-year	Landsat 8	66-95%	>
Basin	NA	VIV	3-11%	
Water Supply Index	WSI forecast monthly	CA DWR	7-16%	>
Months in the future	NA	calculated		
Month predicted to	NA	calculated		

NASA

C https://data.pointblue.org/apps/autowater/?page_id=196

Forecasting – Future

Driver covariate forecasts

Forecasting Recharge Benefits

