Managing Forests for Sustainable Harvest and Wildlife Habitat Using Earth Observations and Modeling of Forest Structure and Landscape Connectivity

Andrew J Elmore, Matt C Fitzpatrick
U of Maryland Center for Environmental Science
Appalachian Laboratory, Frostburg, MD

Jeff Larkin
Indiana University of Pennsylvania and
The American Bird Conservancy

Collin Shepherd
USFS Allegany National Forest

Joseph Petroski
PA Department of Conservation and Natural Resources

Ben Jones
PA Game Commission
Management of PA forests for bird habitat
- 40% of the 16.7 million acres of forest in PA are greater than 80 years old
- >50% of PA forests are fully stocked with a net growth-to-removal ratio of 2:1
- Lack of early successional forest habitat is associated with declines in populations of Golden-winged Warbler, Cerulean Warbler, and Wood Thrush.
- Increases in population size observed in a variety of other bird species, including the Pileated woodpecker, Yellow-bellied sapsucker, Acadian Flycatcher, Yellow-throated vireo, Ovenbird, Worm-eating warbler, Hooded-warbler, Magnolia warbler, Black-throated blue warbler, and Black-throated green warbler.
Golden-winged Warblers population decline

- ~2.3% decline per year range wide (North American BBS; Sauer et al. 2017)
- 61% decline in occupancy in 20 yrs (PA Breeding Bird Atlas)
Fledgling movement data demonstrate the importance of landscape structure.
Project Conceptual Framework

- Forest Structure
- Landscape Structure

Models of how bird habitat depends on structure

Forest Harvest Model
Site Information Etc.

Forest Harvest and Treatment Decisions
Lidar Metrics

1. Mean canopy height (CH)
2. 95% Canopy Height
3. Standard deviation of CH
4. Coefficient of variation of canopy height
5. Percent of first returns > 2m
6. Percent of first returns > mean canopy height
7. Height of the median return (HOME)
8. Vertical distribution ratio (VDR)

Lefsky et al. 2002 Bioscience
1. Use Principal Components Analysis (PCA) to condense variability in LiDAR point cloud into a few dimensions

2. Use this reduced dimensionality to quantify forest structure, classify patches, and as covariates of bird habitat suitability

3. Based on proportions of returns in each voxel – and intensity & greenness

Lefsky et al. 2002 Bioscience
PCA of forest structure

1. First 3 PCs plotted as Red / Green / Blue
2. ~20% of variance explained
3. Can be submitted to clustering algorithms to produce discrete forest classification
Forest Structure Classes

Updating LiDAR forest structure using Landsat time series of forest disturbance

Continuous Change Detection and Classification (CCDC; Zhu et al. (2012))
Example LiDAR metric across classes

95th Percentile Canopy Height (m)

Class ID

Juvenile Locations
Nest Location
Directional Pathway
Landscape structure

Focus on quantifying composition & configuration of forest patch types at different distances from patches

1. Richness – The number of patch classes
2. Shannon’s Diversity – accounts for proportional abundance of each class
3. Contagion – accounts for proportional abundance and class adjacency type
4. Shape – ratio of patch perimeter divided by patch area
5. Proximity – sum of patch area and squared distance between patches of the same class
6. Edge density – the total length of edge divided by the focal area
Occupancy models for a suite of bird species of management interest
Project Conceptual Diagram

- Forest Structure
- Landscape Structure

Models of how bird habitat depends on structure

Forest Harvest Model Site Information Etc. → Forest Harvest and Treatment Decisions
Forest Structure Before and After Harvest
Landscape structure before and after harvest
Things that could go wrong

- Remote sensing-based forest structure won’t capture the finer aspects of forest structure important for habitat.

- Landscape structure metrics won’t be an important predictor of bird occurrence.

- The model works really well and supports cutting down all the forests to increase bird habitat to the detriment of other species.