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Shannon’s index). For both Shannon’s index and Simp-
son’s index, the difference between regression slopes at
1 mm and 1 cm scales were not significant. There were
significant differences between slopes at larger scales
(P < 0.001).
Evenness (Fig. 4e) showed similar but slightly weaker

relationship with spectral diversity than Shannon’s index.
A linear relationship was found between phylogenetic

evenness (Fig. 4f) and spectral diversity at fine scales
(1 mm). The relationship was not as strong as the species-
evenness–spectral-diversity relationship but still signifi-
cant at small spatial scales. Similar to the CV–plant-spe-
cies-richness relationships, ANCOVA tests suggested no
significant difference between 1 mm and 1 cm regression
slopes for CV–species-evenness and CV–phylogenetic-
evenness relationships.

FIG. 4. Spectral diversity (coefficient of variation) vs. conventional biodiversity metrics ((a)planted species richness, (b)
observed species richness, (c) Shannon’s index, (d) Simpson’s index, (e) species evenness, (f) phylogenetic species evenness) for vary-
ing pixel sizes (diameters). The definitions of conventional biodiversity metrics are in Table 1. Fit lines are not shown for P > 0.05.
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Spectral diversity – plant diversity relationship depends 
on spatial resolution

Ran Wang

noticed two distinct trends in the CV-Shannon's index relationship de-
pending upon the CV range (low or high): at low (CV < 0.5) values, we
noted a positive CV-Shannon's index relationship, while at high
(CV > 0.5) values, this trend was reversed (Table 7 and Fig. 6). Further
exploration revealed that a single species, Petalostemum villosum, which
had the largest within-species variation among all the species that in-
dicated as the largest mean distance from centroid in spectral space
(Fig. 3), was largely responsible for this effect. The decreasing CV-
Shannon's index relationship indicated that a high percentage of species
with large within-species variation (e.g. Petalostemum villosum) can lead
to an anomalously high CV values within a plot. In this case, an increase
in plot-level species diversity decreased the CV. This result revealed
that besides species richness and evenness, species identity and spectral
properties of specific species affect CV values and can confound the CV-
biodiversity relationship.

3.4. Species-based optical diversity (PLS-DA classification)

When all spectra were included, higher classification accuracy and
Kappa statistic values were achieved with leaf-level measurements than
with image-derived measurements (Table 4). This was presumably a
consequence of the image-derived spectra capturing more within-spe-
cies variation than leaf-level spectra and thus overestimating the plot-
level vegetation diversity. Most classification errors occurred among
graminoid species (Poa pratensis, Andropogon gerardi and Panicum vir-
gatum). For the leaf-level reflectance, using full range spectra increased
the classification accuracy (Table 4), indicating that including in-
formation in the SWIR wavelengths increased the species separability.

The effect of using the mean reflectance vs. all spectra on biodi-
versity prediction accuracy changed between leaf-level and image-de-
rived data. For leaf-level data, when the mean reflectance of each
species was used instead of all individual spectra to test the PLSDA
classifier, the classification accuracy declined from 0.78 to 0.75 using
VIS-NIR wavelengths or from 0.80 to 0.69 using full-range spectra. By
contrast, for image-derived data, the overall classification accuracy was
actually highest (16/16) when using mean spectra, and declined to 0.73
when using all spectra (Table 4 and Fig. 7). When using mean re-
flectance spectra, species richness, Shannon's index and Simpson's index
were underestimated by spectral species metrics using leaf-level data
(Fig. 7 a, b, c). When using all reflectance spectra, vegetation diversity

metrics were generally overestimated by spectral species metrics for
both leaf-level and image-derived reflectance (Fig. 7d, e, f). This in-
dicated that the spectral sampling method influenced the spectral se-
parability in complex and seemingly contradictory ways that had sig-
nificant implications for biodiversity estimation.

Table 4
Results of non-parametric multivariate analysis of variance (NPMANOVA),
comparing among- and within-species spectral variation using Euclidean dis-
tance and overall accuracy and Kappa statistic of the PLS-DA classification.

Spectral region Bands NPMANOVA PLSDA

F ratios Overall
accuracy

Kappa
statistic

Leaf-level VIS-NIR (mean
Refa)

601 –b 0.75 0.73

Leaf-level VIS-NIR (all
samples)

113.02⁎⁎⁎ 0.78 0.76

Leaf-level full spectra
(mean Refa)

2001 –b 0.69 0.67

Leaf-level full spectra (all
samples)

188.89⁎⁎⁎ 0.80 0.77

Image-derived VIS-NIR
(mean Refa)

762 –b 1 1

Image-derived VIS-NIR
(all samples)

694.94⁎⁎⁎ 0.73 0.70

a Mean reflectance of each species was used to generate the simulation plots.
b NPMANOVA was not applied to the mean reflectance data because the

within species variation equals 0 in this case.
⁎⁎⁎ Indicates p < 0.01. p values were calculated by permutation since the

distributions of the F-ratios are not distributed like Fisher's F-ratio under the
null hypothesis (Anderson, 2001).

Fig. 4. Coefficient of variation (CV)-Shannon's index relationships from simu-
lated plots using (a) leaf-level VIS-NIR spectra, (b) leaf-level full range, and (c)
image-derived spectra. The CV calculated with soil spectra were plotted on the
right Y-axis. The CV-biodiversity relationships were summarized in Table 5.
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Prairie plants tend to have smaller canopies than many other vegetation
types such as forests, which have been the primary focus of most of the
spectral diversity studies to date (Wang et al., in press). The small
stature of prairie vegetation allowed us to conduct proximal measure-
ments with the tram system, and the resulting comparisons with air-
borne data demonstrated the significance of such experimental com-
parative approaches to remote sensing. In the near future, it is likely
that unmanned aerial vehicles (UAVs) will allow similar experiments at
different spatial resolutions, particularly as high-quality imaging spec-
trometry data becomes obtainable from such platforms. Tram systems
and UAVs provide high spatial resolution observations, offering useful
tools for understanding the principles of estimating species richness via
spectral diversity metrics. By contrast, most remote sensing data from
spaceborne and airborne sensors suffer from a large mismatch between
the ecological sampling unit (plot size) and spatial resolution of the
remote sensing data (Skidmore et al., 2015; Turner, 2014). Therefore,
when defining the sampling approach and plot design, knowing the
limitations of particular sensors and remote sensing techniques can help
design effective experiments examining the effects of scale on spectral
diversity.

4.2. Effect of soil background on spectral diversity metrics

The spectral diversity metrics were affected not only by hetero-
geneity of the vegetation within an image but also by soil background.
This impact of soil exposure was clearly observable in the proximal data
set where individual soil pixels were clearly visible. Filtering of these
pixels improved the performance of spectral diversity metrics. The very
high spatial resolution of the proximal data captured information from
various sources including plants (both sunlit and shaded leaves), soil
cover, and shadow. We were able to partially correct for these con-
founding factors in the proximal data set having a spatial resolution of
1 mm. However, removing their impact from the airborne data having a
spatial resolution of 0.75 m was more difficult, and required spectral
un-mixing as a preliminary step to normalization of spectral diversity
metrics. Applying spectral un-mixing to correct for soil exposure pre-
sents challenges related to the “scalability” and “generality” of the
spectra of endmembers (Asner and Heidebrecht, 2002; Asner and
Lobell, 2000). Soil reflectance is highly sensitive to moisture and
roughness (Jacquemoud et al., 1992; Pinty et al., 1998) and its re-
flectance can vary within and across study sites and through time.
Therefore, the spectra extracted from one site (or image) may not be
applicable to another site and another time. In addition, given the
findings of this experiment, removing soil background can be a limiting
factor for imaging spectrometers with moderate to coarse spatial re-
solutions, where the pixel size exceeds that of individual plant canopies.
However, fusion of hyperspectral data with high spatial resolution
multispectral data can provide the capability to extract soil background
information (Yokoya et al., 2012).

4.3. Informative spectral regions for mapping biodiversity

An important finding from the dimension reduction experiment was
that the most informative spectral regions for estimating species rich-
ness varied with spatial resolution. At fine spatial resolutions, we ob-
served varying contribution of visible and NIR regions to spectral di-
versity (Fig. 10). The relative contribution of bands in the visible range
(~427–700 nm) was greater than in the NIR range (~700–914 nm).
The visible region of the spectrum is affected by leaf pigments, sug-
gesting that leaf pigments influence spectral diversity. However, at a
coarser spatial resolution (airborne data with spatial resolution of

Fig. 9. Species richness vs. spectral diversity metrics estimated from the airborne data set
with spatial resolution of 0.75 m after normalization for soil fraction. (a) CV, (b) CHV, (c)
SAM, (d) SID, and (e) CHA.
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dotscircles are species pairs. ACHMI, Achillea millefolium L.; AGRSM, Agropyron
smithii Rydb.; AMOCA, Amorpha canescens Pursh; ANDGE, Andropogon gerardii
Vitman; ASCTU, Asclepias tuberosa L.; KOECR, Koeleria cristata auct. non Pers.
p.p.; LESCA, Lespedeza capitata Michx.; LIAAS, Liatris aspera Michx.; LUPPE,
Lupinus perennis L.; MONFI, Monarda fistulosa L.; PANVI, Panicum virgatum L.;
PETCA, Petalostemum candidum (Willd.) Michx.; PETPU, Petalostemum
purpureum (Vent.) Rydb.; POAPR, Poa pratensis L.; SCHSC, Schizachyrium
scoparium (Michx.) Nash; SOLRI, Solidago rigida L.; SORNU, Sorghastrum nutans
(L.) Nash.

Fig. 2

Spectral profiles, their coefficient of variation, and local maxima of the
coefficient of variation.
The range of vector-normalized spectra of all species (n = 17) is shown in red. The
black line is the coefficient of variation of vector-normalized reflectance values for
each spectral band (n = 2,000). The blue vertical lines indicate five local maxima of
the coefficient of variation (at 429, 675, 1,451, 1,981 and 2,360 nm); they align
closely with known absorption features for chlorophylls (at 430 and 660 nm),
carotenoids (at 430 nm), leaf water content (at 1,450 and 1,980 nm), proteins (at
1,980 and 2,350 nm) and cellulose (at 2,350 nm).

Spectral distance is associated with functional 
and phylogenetic distance between species

Schweiger, Cavender-Bares et al, Nature EE 2018
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Spectral diversity predicts productivity

Schweiger, Cavender-Bares et al, Nature EE 2018

Plant Productivity (g m-2)

Spectral diversity
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Figure 2 | Spectral profiles, their coefficient of variation, and local maxima of the coefficient of 297 
variation. The range of vector normalized spectra of all species (n = 17) is shown in red. The black line is 298 
the coefficient of variation of vector normalized reflectance values for each spectral band (n = 2,000). The 299 
blue vertical lines indicate five local maxima of the coefficient of variation (at 429 nm, 675 nm, 1451 nm, 300 
1981 nm, and 2360 nm) and the location of known absorption features of chemical leaf traits. 301 
 302 
 303 

 304 

Figure 3 | Relationship between spectral diversity and productivity. Aboveground productivity (g m-305 
2) increased with spectral diversity of plant communities calculated from a, species’ mean leaf level 306 
spectra (n = 35, r2 = 0.51, b = 94.92, t33 = 5.90, P < 0.001) and b, 1,000 randomly selected image pixels 307 
per plot acquired by an imaging spectrometer mounted on an automated tram (n = 27, r2 = 0.41, b = 3.81, 308 
t25 = 4.14, P < 0.001). Each point here and in similar subsequent figures represents a single plot in the 309 
Cedar Creek biodiversity experiment.  310 
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Spectral diversity using only local maxima of the 
coefficient of variation also predict productivity



Spectra predict functional traits with high accuracy
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Remotely sensed above ground chemistry 
predicts below ground processes
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logistic model using ground cover measurements and soil angle (Serbin et al. 2015)

R2 =0.63



Remotely sensed vegetation cover predicts fungal and bacterial 
diversity and composition
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Phylogeny meets Spectra

Drift Constrained Convergent

Evolutionary
Model

Spectral
Model

Meireles, Schweiger, Cavender-Bares 2017   — www.github.com/meireles/spectrolab

http://github.com/meireles/spectrolab


Phylogeny meets Spectra

Meireles et al. 2017;   — www.github.com/meireles/spectrolab

Evolutionary
Model

Spectral
Model

http://github.com/meireles/spectrolab
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Temperate North America

Tropical South America

Spectra are phylogenetically conserved EXCEPT in the visible range 
associated with pigments for light harvesting and photoprotection

NIMBioS working group



Meireles and NIMBioS working group
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Place	an	unknown	leaf	spectrum	within	the	plant	tree	of	life	and	
derive	the	probability	that	it	falls	within	a	given	clade

NIMBioS	workig	group	on	Remote	Sensing	of	Biodiversity

Using	SDMs	to	constrain	taxonomic	
assignments	using	hyper	spectral	data

Constrain RS data using species distribution 
models
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