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Abstract

Measurements of forest structure are important for wildlife habitat management. An optimal strategy for mapping forest structure would
include detailed measurements of the vertical dimension, which are traditionally provided by field sampling, together with the broad spatial
coverage afforded by remote sensing. While no single sensor is capable of delivering this at the present time, it should be possible to combine
information from multiple sensors to achieve a reasonable approximation. In this study, we compare estimates of forest structural metrics derived
from remote sensing to measurements obtained in the field (large tree maximum canopy height, mean canopy height, standard deviation canopy
height, and biomass). We then statistically combine structural information from LiDAR, RaDAR, and passive optical sensors in an attempt to
improve accuracy of our estimates. The results of this study indicate that LiDAR is the best single sensor for estimating canopy height and
biomass. The addition of ETM+ metrics significantly improved LiDAR estimates of large tree structure, while Quickbird and InSAR/SAR
improved estimates either marginally or not at all. The combination of all sensors was more accurate than LiDAR alone, but only marginally better
than the combination of LiDAR and ETM+. Structure metrics from LiDAR and RaDAR are essentially redundant, as are ETM+ and Quickbird.
© 2006 Elsevier Inc. All rights reserved.
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1. Introduction

Measurements of forest structure are critical for many
applications, including wildlife management and biodiversity
studies, fire modeling, and carbon stock estimation. Canopy
height and associated metrics of vertical heterogeneity (North et
al., 1999), when considered together with site characteristics,
are indicators of old-growth forest conditions and thus are of
interest to researchers studying old-growth endemics. Canopy
height is an important input for ecosystem and fire models and
is highly correlated with biomass. Biomass is a key component
of the carbon cycle, as forests represent large carbon sources
and sinks (Skole & Tucker, 1993), and is also a surrogate for
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fuel loading estimation (Finney, 1998). Large trees, in
particular, may provide essential habitat to California spotted
owls (North et al., 1999) and are an important component of
aboveground biomass.

Traditionally, these attributes have been measured in the
field using hand-held equipment. Field-based methods can be
highly accurate but are time-consuming and thus are typically
limited in scope to either mapping at fine scales or sampling at
the landscape scale. Multispectral (Hyyppä et al., 1998) and
hyperspectral remote sensing (Pu & Gong, 2004) have been
used to map structural metrics at moderate resolution and broad
scales. However, passive optical sensors have difficulty
penetrating beyond upper canopy layers (Weishampel et al.,
2000) and are better suited for mapping horizontal structure,
e.g., land cover type. Interferometric synthetic aperture radar
(InSAR) can provide measures of vertical structure at
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landscape scales at varying degrees of accuracy; however, at
the present time these are best suited for structurally
homogeneous forest types (Treuhaft & Cloude, 1999; Treuhaft
& Siqueira, 2000). Full waveform-digitizing, large footprint
LiDAR provides highly accurate measurements of forest
structure at the footprint level of observation (Nelson et al.,
1984, 1988; Nilsson, 1996; Lefsky et al., 1999a; Drake et al.,
2002; Hyde et al., 2005); however, they are not capable of
imaging entire landscapes. Due to the high cost of flight time,
the need to limit scanning to near nadir in order to prevent
ranging errors, and the presence of coverage gaps due to
aircraft pitch and roll, a typical large footprint LiDAR mission
acquires samples (albeit at a high frequency) instead of the
wall-to-wall coverage provided by other sensors, such as
RaDAR or passive optical sensors.

The optimal strategy for mapping forest structure would
include the finely detailed measurements of the vertical
dimension that field sampling provides as well as the broad
spatial coverage of remote sensing. Although no single
technology is currently capable of providing this level of forest
structural information, advancements in InSAR and LiDARwill
likely lead to broad-scale mapping of vertical structure in the
near future. In the meantime, it is possible to map forest
structure at intermediate scales by statistically combining or
fusing information from multiple sensors to take advantage of
the highly detailed vertical measurements provided by full
waveform-digitizing LiDAR, the broad-scale mapping capabil-
ities of passive optical sensors, and the coarse sensitivity to
horizontal and vertical structure afforded by InSAR. Combining
information from multiple sensors, or data fusion, has yielded
promising results for the estimation of forest structural
characteristics (Wulder et al., 2004). Hudak et al. (2002)
combined regression and co-kriging models from LiDAR and
multispectral data; the results were more accurate than either
data set alone. Wulder and Seeman (2003) used texture metrics
from Landsat TM images to improve LiDAR estimates of
canopy height (from 61% to 67% variability explained).
Moghaddam et al. (2002) found that combining Landsat TM
and several RaDARs was more accurate in predicting ground-
based measurements of forest structure than any single sensor
alone. Slatton et al. (2001) combined LiDAR data with
interferometric RaDAR to improve the estimates of vegetation
heights.

1.1. Objectives

Previous work (Hyde et al., 2005) established that large
footprint, waveform LiDAR could be used to map forest
structure within our study area at the footprint level with a high
degree of accuracy. LiDAR was also highly accurate at
measuring maximum canopy height and biomass at the
“stand” (defined as 1ha) level of observation when at least
40% of the area of observation was sampled. Where LiDAR
data are sparse, it is an open research question whether or not
improvements can be made at the stand and landscape scales via
the combination of data from multiple sensors. For this study,
only large diameter (>76cm dbh) trees will be considered
because at the stand level only stems in this size class were
measured during our field data collection. Furthermore, a
comparison at the footprint level of observation is somewhat
problematic due to the inconsistent geolocation accuracy and
resolution of the various sensors used in this study.

The primary objective of this effort is to quantify and
compare the predictive power of individual remote sensing data
sets to estimate large tree canopy height and biomass at the
landscape scale. The secondary objective is to combine large
footprint, waveform LiDAR data with other remote sensing data
sets to determine if there is either synergy or redundancy in
predictive power when combining other remote sensing data
sets and large footprint, waveform LiDAR data. The tertiary
objective is to ascertain the optimal sampling regime for large
footprint, waveform LiDAR, i.e., to determine how sparsely
large footprint, waveform LiDAR can be sampled (and fused
with other remote sensing data sets) and still achieve a
reasonable degree of predictive power. The results will be
used to create landscape scale maps of forest structure suitable
for wildlife habitat analysis.

The paper is organized as follows. First we describe
collection of field plot data and provide details of the remote
sensing (LVIS, SAR/InSAR, ETM+, Quickbird, DEM) data
acquisition, which took place over the Sierra Nevada. This is
followed by a presentation of the methods used in the
processing and analysis of both remote sensing and field data,
including the estimation of canopy height and biomass. We then
present the results of statistical comparisons between field-
derived and remote sensing-derived forest structural attributes
and the results of multi-sensor fusion. Finally, we discuss the
significance of results relative to the retrieval of forest structure
at the landscape level.

2. Data collection

The data used in this study include in situ observations of
forest structure, LiDAR data sets (Hyde et al., 2005), and other
remote sensing data sets (Fig. 1).

2.1. Site description

The study area is located in the Sierra Nevada mountains of
California. This site is approximately 60,000ha, with elevation
ranging from 853 to 2743m. Forest types include white fir
(Abies concolor), red fir (Abies magnifica), Sierran mixed-
conifer, ponderosa pine (Pinus ponderosa), giant sequoia
(Sequoiadendron giganteum), and montane hardwood-conifer
(for a complete description, see Hunsaker et al., 2002).

2.2. Field data

One hundred twenty plots were distributed through the
northern part the study area (Sierra National Forest) using a
modified stratified random sampling scheme. Although the
plots were centered on laser footprints, the actual waveforms
were not examined before the stratification (to prevent bias).
Hence, no attempt was made to retain only waveforms that



Fig. 1. Images depicting the remote sensing data sets in the Sierra Nevada used for this study. The top left image is from LiDAR, the top right image is from InSAR, the
bottom left is Quickbird and the bottom right is ETM+. The images are cropped and enlarged to highlight the different structural features that each sensor is capable of
resolving.
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showed a strong ground return. The number of plots placed
within each land cover type was proportional to their actual
distribution within Sierra National Forest, with the exception of
the red fir class; this vegetation type was oversampled because
of its importance as remnant old-growth. Circular plots with an
area of 1ha (56.4m radius) were established; these “stand” level
plots were designed to be commensurate with existing USDA
Forest Service Forest Inventory and Analysis plots.

Field plot data were collected during the summers of 2000
and 2001 and error-checked in 2002. All live stems with a
diameter at breast height (dbh) ≥76cm were inventoried and
species type was recorded. The dbh of each stem was measured
with a fiberglass tape. The height of the stem was measured with
Impulse LR laser range finder (Laser Technology Inc., Engle-
Table 1
Summary statistics of field plot measurements

Minimum Maximum Mean Standard
deviation

Diameter at breast height (cm) 76.0 548.0 a 103.1 24.9
Height (m) 2.1 b 80.6 a 36.9 13.7
Biomass (kg) 1122.9 b 156698.0 a 8042.00 9224.3

a Giant sequoia.
b Snag.
wood, CO). Summary statistics of the field plot data are
provided in Table 1.

2.3. Digital Elevation Model (DEM) data

A 10m resolution Digital Elevation Model was acquired
from the U.S. Geological Survey. This data set consists of “bald
earth”, ground elevation, or the elevation of the earth's surface
devoid of vegetation or anthropogenic features. The vertical
resolution is ±7m.

2.4. LiDAR data

LiDAR data were collected by the Laser Vegetation Imaging
Sensor (Blair et al., 1999) during October 1999 while deciduous
trees were in leaf-on condition. LVIS is an airborne laser
altimeter that records the time and amplitude of a laser pulse
reflected off target surfaces. LVIS is a full waveform-digitizing
system and records the vertical distribution of nadir-intercepted
surfaces at 30cm vertical resolution. The LVIS instrument flew
aboard the NASA C-130H aircraft at about 7km above ground
level. LVIS is a large footprint LiDAR, recording spots or
“footprints” illuminated within a 7° potential field of view. For
the Sierra Nevada flights these footprints had a nominal radius
of 12.5m, nominally separated by 12.5m across track and



Table 2
Metrics derived from LiDAR waveforms

Metric Description

MINMAXHT Minimum height of the top of the canopy (m)
MAXMAXHT Maximum height of the top of the canopy (m)
MEANMAXHT Mean height of the top of the canopy (m)
STDEVMAXHT Standard deviation of the height of the top of the canopy (m)
MINCOV Minimum canopy cover (%)
MAXCOV Maximum canopy cover (%)
MEANCOV Mean canopy cover (%)
STDEVCOV Standard deviation of canopy cover (%)
MINHOME Minimum height of the median energy of the waveforms (m)
MAXHOME Maximum height of the median energy of the waveforms (m)
MEANHOME Mean height of the median energy of the waveforms (m)
STDEVHOME Standard deviation of the height of the median energy of the

waveforms (m)
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continuous along track. Because of variations in altitude of the
plane above the topography of the Sierra, actual footprint radii
vary between 9 and 11m. An area of about 175 km2 was
mapped. The fundamental observation of LVIS is a waveform
that gives the vertical distribution of nadir-intercepted surfaces.
The amplitude of the waveform at any height is proportional to
the amount of reflective material intercepted at a particular
height, the orientation of that material, and its reflectance
(ignoring such effects as multiple scattering within the
footprint). Initial processing of the data is required to remove
various biases to permit accurate geolocation. The data are then
further processed to find ground and canopy returns using
automated methods, i.e., computer-coded algorithms (Hyde et
al., 2005).

2.5. SAR/InSAR data

An X-band (3cm wavelength, HV polarization) single-
baseline RaDAR data set was selected for this study because the
interferometric scattering phase center of X-band occurs
relatively near to the top of the forest canopy. The RaDAR
data set was generated by the STAR-3i system from Intermap
Technologies (Englewood, CO). The STAR-3i instrument was
flown aboard a Learjet in August 1999 and acquired a 3500km2

swath as well as a second overflight to minimize shadows and
layover areas. Both a SAR backscatter intensity image and an
InSAR “terrain model”, that represents the elevation of the top
(or near the top) of the canopy, were provided. The nominal
spatial resolution of the data sets is 2.5m and 10m for the
backscatter intensity image and the DEM, respectively. The
reported accuracy for these products is 2.5m RMSE horizontal
and 3.0m RMSE vertical. The intensity images are filtered to
remove speckle.

2.6. ETM+ data

A Landsat ETM+ scene from October of 1999 covering
Sierra National Forest and Sequoia National Park was obtained
from USGS Eros Data Center. The scene consists of six visible
and short-wave infrared bands with a nominal spatial resolution
of 30m (thermal and panchromatic bands were not used). The
image was acquired during leaf-on conditions.

2.7. Quickbird data

Quickbird imagery was acquired from Satellite Imaging
Corp (Houston, TX). Quickbird imagery consists of four
spectral bands (3 visible, 1 near infrared) with a nominal spatial
resolution of 2m. Images were acquired in June 2002 and May
2003 in leaf-on conditions.

3. Data analysis

3.1. LiDAR data

The focus of this study is the estimation of several structural
metrics: canopy height (mean, maximum, and standard
deviation) and aboveground biomass. Canopy height is directly
retrieved from waveform data using algorithms described
below. It requires identification of a ground return in the
waveform, and associated with this, the identification of the
canopy portion of the waveform. Biomass is not directly
measured by LVIS; rather, metrics derived from LiDAR
waveforms, such as canopy height, and height of median
energy, are correlated with canopy structure to compute biomass
estimates.

Past studies, e.g., Lefsky (1997), have relied mainly on
manual methods for identifying ground returns, especially
where the returns are weak relative to the background noise
level. While appropriate for validation studies with small
numbers of waveforms, manual methods are impossible for the
large number of LVIS waveforms being used here (ca. one
million). Canopy height is determined relative to the ground, so
accurately retrieving ground elevation is critical. An automated
algorithm (described in Hyde et al., 2005) for finding both
ground and canopy height was employed.

While LVIS does not measure biomass directly, metrics
derived from LiDAR have proven effective in estimating forest
biomass (Drake, 2001; Lefsky, 1997; Lefsky et al., 1999a,
2001, 1999b; Nelson et al., 1984, 1988; Nilsson, 1996).
Canopy height by itself is sufficient for accurate biomass
prediction in some more structurally simple biomes, as canopy
height and biomass tend to be highly correlated (Lefsky et al.,
1999b). In more structurally complex biomes, such as tropical
and old-growth Western coniferous forests, some indication of
the depth of the canopy is also useful for predicting biomass
(Lefsky et al., 1999a; Drake, 2001). The metrics used in this
study to estimate biomass include maximum canopy height,
canopy cover, and height of the median energy return (HOME)
(Table 2).

3.2. SAR/InSAR data

Elevation from a USGS DEM was used as the “ground” and
subtracted from the InSAR DEM (“canopy top height”) to
produce a difference image reflecting the height of the InSAR
scattering phase center, which will always be less than the



Table 4
Metrics derived from ETM+ scene (October 1999)

Metric Description

MIN.NDVI Minimum NDVI
MAX.NDVI Maximum NDVI
MEAN.NDVI Mean NDVI
STDEV.NDVI Standard deviation of NDVI
MIN.PCA1 Minimum first principle component
MAX.PCA1 Maximum first principle component
MEAN.PCA1 Mean first principle component
STDEV.PCA1 Standard deviation first principle component
MIN.PCA2 Minimum second principle component
MAX.PCA2 Maximum second principle component
MEAN.PCA2 Mean second principle component
STDEV.PCA2 Standard deviation second principle component
MIN.PCA3 Minimum third principle component
MAX.PCA3 Maximum third principle component
MEAN.PCA3 Mean third principle component
STDEV.PCA3 Standard deviation third principle component
MIN.PCA4 Minimum fourth principle component
MAX.PCA4 Maximum fourth principle component
MEAN.PCA4 Mean fourth principle component
STDEV.PCA4 Standard deviation fourth principle component

All values are unitless.

Table 5
Metrics derived from Quickbird

Metric Description

MIN.QBNDVI Minimum NDVI
MAX.QBNDVI Maximum NDVI
MEAN.QBNDVI Mean NDVI
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observed canopy height, to produce a canopy height model.
Summary statistics (minimum, maximum, mean, median,
standard deviation) of this metric, as well as SAR backscatter
intensity, were calculated from all pixels whose majority was
within the 1ha plots (Table 3).

3.3. ETM+ data

A USGS DEM was used to orthorectify the ETM+ images.
Digital numbers (DN) were converted to at-sensor radiances (L)
using published ETM+ calibration constants (ETM+ Data Users
Guide) and the following equation:

L ¼ a0 þ a1 ⁎ DN

where a0 and a1 refer to the sensor gain and bias, respectively.

3.4. Atmospheric and topographic correction

Radiance was converted to reflectance using top-of-atmo-
sphere irradiance derived using the MODTRAN atmospheric
correction model (Berk et al., 1989). A cosine correction was
used to correct for the influence of topography on the amount of
incident solar radiation. None of the field plots were obstructed
by terrain, i.e., all field plots received direct and diffuse
illumination at the time of image acquisition.

3.5. Metrics

Principle components and NDVI (NIR− red/NIR+red) were
calculated at the stand level for the image. Summary statistics
(minimum, maximum, mean, median, standard deviation) of
these metrics were calculated from all pixels whose majority
was within the 1ha plots (Table 4).

3.6. Quickbird data

A USGS DEM was used to orthorectify the images. Digital
numbers (DN) were converted to at-sensor radiances (L) using
published calibration constants (Satellite Imaging Corp.,
Houston, TX).

3.7. Atmospheric and topographic correction

Radiance was converted to reflectance using top-of-atmo-
sphere irradiance derived using the MODTRAN atmospheric
Table 3
Metrics derived from SAR/InSAR

Metric Description

MIN.SARBS Minimum SAR backscatter intensity (dn)
MAX.SARBS Maximum SAR backscatter intensity (dn)
MEAN.SARBS Mean SAR backscatter intensity (dn)
STDEV.SARBS Standard deviation of SAR backscatter intensity (dn)
MIN.SARHT Minimum InSAR height (m)
MAX.SARHT Maximum InSAR height (m)
MEAN.SARHT Mean InSAR height (m)
STDEV.SARHT Standard deviation of InSAR height (m)
correction model (Berk et al., 1989). A cosine correction was
used to correct for the influence of topography on amount of
incident solar radiation. None of the field plots were obstructed
by terrain, i.e., all field plots received direct and diffuse
illumination at the time of image acquisition.

3.8. Metrics

Principle components and NDVI (NIR− red/NIR+red) were
calculated at the footprint level. Summary statistics (minimum,
maximum, mean, median, standard deviation) of these metrics
were also calculated from all pixels whose majority was within
the 1ha plots (Table 5).
STDEV.QBNDVI Standard deviation of NDVI
MIN.QBPCA1 Minimum first principle component
MAX.QBPCA1 Maximum first principle component
MEAN.QBPCA1 Mean first principle component
STDEV.QBPCA1 Standard deviation first principle component
MIN.QBPCA2 Minimum second principle component
MAX.QBPCA2 Maximum second principle component
MEAN.QBPCA2 Mean second principle component
STDEV.QBPCA2 Standard deviation second principle component
MIN.QBPCA3 Minimum third principle component
MAX.QBPCA3 Maximum third principle component
MEAN.QBPCA3 Mean third principle component
STDEV.QBPCA3 Standard deviation third principle component

All values are unitless.



Table 6
Results of all possible subsets regression models relating remote sensing metrics
and field-measured maximum canopy height

Sensor(s) Coefficient of
determination
(r2)

RMSE Model

LiDAR 0.757 8.8 −2.4+(0.6⁎MEANMAXHT)+
(0.9⁎SDMAXHT)+
(0.5⁎MAXMAXHT)

QB 0.659 10.5 −419.1+(−0.07⁎MIN_QBPC1)+
(0.06⁎STDEV_QBPC1)+
(0.7⁎MEAN_QBPC3)+
(0.9⁎STDEV_QBPC3)

InSAR 0.557 11.9 21.2+(0.8⁎MEAN_SARHT) ⁎

(3.1⁎STDEV_SARHT)
ETM 0.712 9.6 188.7+(−0.2⁎MIN_PCA1)+

(0.2⁎MEAN_PCA2)+
(−0.7⁎MEAN_PCA3)

LiDAR+QB 0.795 8.2 −11.7+(0.4⁎MEANMAXHT)+
(0.5⁎MAXMAXHT)+
(30.2⁎MAX_QBNDVI)+
− (0.02⁎MIN_QBPC1)

LiDAR+
InSAR

0.757 8.8 −2.4+(0.6⁎MEANMAXHT)+
(0.9⁎SDMAXHT)+
( 0.5⁎MAXMAXHT)

LiDAR+
ETM

0.827 7.5 162.8+(0.7⁎MAXMAXHT)+
(−0.2⁎MEANCOVER)+
(−0.1⁎MIN_PCA1)+
(0.1⁎MAX_PCA2)+
(−0.3⁎MIN_PCA3)

QB+InSAR+
ETM

0.764 8.8 208.9+(−0.2⁎MIN_PCA1)+
(−0.3⁎MEAN_PCA3)+
(−0.4⁎MAX_PCA4)+
(0.5⁎MAX_SARHT)+
(−0.05⁎MIN_QBPC1)

LiDAR+QB +
InSAR+
ETM

0.835 7.3 245.6 (0.7⁎MAXMAXHT)+
(−0.1⁎MEANCOVER)+
(192.4⁎MIN_NDVI)+
(−0.2⁎MIN_PCA1)+
(−0.5⁎MIN_PCA3)

In all cases, n=111 and p<0.001.
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3.9. Field plot data

Field measurements at the footprint and stand levels include
maximum canopy height, i.e., the height of the tallest stem
within each plot, mean height of all stems within the plot, and
standard deviation of the maximum height of all stems within
the plot. Species-specific allometric equations relating stem
biomass to height and dbh were obtained from the USDA Forest
Service (Waddell & Hiserote, 2003). These equations were
applied to the field data to calculate total standing (above-
ground) biomass for each stem (≥76cm dbh); the biomass of all
stems within each plot was added to provide stand level totals.

4. Methods

4.1. Stand (1ha) level

All possible subsets regression was used to compare the
remote sensing data sets to field data. The best model, where all
variables are significant at the p<0.05 level and Mallow's Cp
most closely approximated the number of variables in the
model, was selected. First, ETM+, Quickbird, LiDAR, and
SAR/InSAR data sets were compared separately. Next, ETM+,
Quickbird, and SAR/InSAR data sets were compared, in
various combinations, to field data to produce models of
canopy height and biomass. The combinations include: (1)
LiDAR and Quickbird, (2) LiDAR and SAR/InSAR, (3)
LiDAR and ETM+, (4) Quickbird, SAR/INSAR, and ETM+
and, (5) LiDAR, Quickbird, SAR/INSAR, and ETM+.

4.2. Landscape level

LiDAR data were randomly sampled at a variety of
frequencies, corresponding to the following percentages of
the total LiDAR data set: 1, 2, 5, 10, 20, 30, 40, 50, 60, 70, 80,
90, and 100. Where LiDAR data were present, canopy height
and biomass maps at each sample interval were produced by
applying the field-validated models to resampled 1ha pixels.
Where LiDAR data were not present, only the other remote
sensing data sets (and their corresponding field-validated
model) were used. The result was a series of images at each
sample interval that used LiDAR where present; the gaps
where LiDAR was not present were “filled in” with the other
remote sensing data sets. The mean canopy height and biomass
of each image were then calculated. In addition, SAR/InSAR,
Quickbird, and ETM+ metrics were sampled at the same
frequency as the LiDAR data set (above) and put into
regression models to predict the LiDAR observations of
canopy height and biomass at the footprint level of observation
(from Hyde et al., 2005).

5. Results

5.1. Stand (1ha) level

For the single sensor models of maximum canopy height
(Table 6), LiDAR (r2 =0.76, RMSE=8.8m) was more accurate
than Quickbird (r2 = 0.66, RMSE=10.5m), SAR/InSAR
(r2 =0.56, RMSE=11.9m), ETM+ (r2 =0.71, RMSE=9.6m).
The addition of either Quickbird or ETM+ to LiDAR resulted in
slight (r2 = 0.79, RMSE= 8.2) to moderate (r2 = 0.83,
RMSE=7.5) improvement, respectively; the addition of SAR/
InSAR resulted in no improvement. The combination of all
sensors (LiDAR, ETM+, SAR/InSAR, and Quickbird) was the
most accurate (r2 =0.84, RMSE=7.3m), while all other sensors
excluding LiDAR (SAR/InSAR, ETM, and Quickbird) per-
formed as well as LiDAR alone (r2 =0.76, RMSE=8.8m).

For the single sensor models of mean canopy height
(Table 7), LiDAR (r2 =0.61, RMSE=7.3m) was more accurate
than Quickbird (r2 =0.57, RMSE=7.8m), SAR/InSAR (r2 =
0.45, RMSE=8.7m), ETM+ (r2 =0.60, RMSE=7.5m). The
addition of either Quickbird or ETM+ to LiDAR resulted in
slight (r2 =0.66, RMSE=6.9) to moderate (r2 =0.72, RMSE=
6.4) improvement, respectively; the addition of SAR/InSAR
resulted in no improvement. The combination of all sensors
(LiDAR, ETM+, SAR/InSAR, and Quickbird) was the most



Table 8
Results of all possible subsets regression models relating remote sensing metrics
and field-measured standard deviation canopy height

Sensor(s) Coefficient of
determination
(r2)

RMSE Model

LiDAR 0.587 3.5 −3.7+(0.2⁎MEANMAXHT)+
(0.2⁎MAXMAXHT)+
(−0.5⁎MEANHOME)+
(0.3⁎SDHOME)+
(0.08⁎MINCOVER)

QB 0.482 3.9 −115.3+
(−0.02⁎MEANQBPC1)+
(0.04⁎STDEV_QBPC2)+
(0.01⁎MAX_QBPC2)+
(0.2⁎MAX_QBPC3)

InSAR 0.457 4.0 2.8+(−0.15⁎MIN_SARHT)+
(0.4⁎MAX_SARHT)

ETM 0.517 3.7 37.5+(−187.0⁎STDEV_NDVI)+
(−0.6⁎MIN_PCA1)

LiDAR+QB 0.595 3.6 −25.5+(0.2⁎MEANMAXHT)+
(0.5⁎SDMAXHT)+
(0.01⁎MEAN_QBPC2)+
(0.2⁎STDEV_QBPC3)

LiDAR+
InSAR

0.611 3.4 −2.7+(0.2⁎MEANMAXHT)+
(0.2⁎MAXMAXHT)+
(− .5⁎MEANHOME)+
(0.08⁎MINCOVER)+
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accurate (r2=0.72, RMSE=6.4m), while all other sensors ex-
cluding LiDAR (SAR/InSAR, ETM, and Quickbird) performed
slightly better than LiDAR alone (r2=0.64, RMSE=7.1m).

For the single sensor models of standard deviation canopy
height (Table 8), LiDAR (r2 =0.59, RMSE=3.5) was more
accurate than Quickbird (r2 =0.48, RMSE=3.9), SAR/InSAR
(r2 =0.46, RMSE=4.0), ETM+ (r2 =0.52, RMSE=3.7). The
addition of either Quickbird or ETM+ to LiDAR resulted in
slight (r2 = 0.60, RMSE= 3.6) to moderate (r2 = 0.63,
RMSE=3.2) improvement, respectively; the addition of
SAR/InSAR resulted in no improvement. The combination
of all sensors (LiDAR, ETM+, SAR/InSAR, and Quickbird)
was the most accurate (r2 =0.64, RMSE=3.2), while all other
sensors excluding LiDAR (SAR/InSAR, ETM, and Quick-
bird) were less accurate than LiDAR alone (r2 =0.56,
RMSE=3.5).

For the single sensor models of biomass (Table 9), LiDAR
(r2 =0.77, RMSE=75.3mg/ha) was more accurate than Quick-
bird (r2 =0.55, RMSE=105.0mg/ha), SAR/InSAR (r2 =0.51,
RMSE=109.1mg/ha), ETM+ (r2 =0.49, RMSE=111.2mg/ha).
The addition of ETM+ to LiDAR resulted in slight (r2 =0.80,
RMSE=71.3mg/ha) improvement; the addition of SAR/InSAR
or Quickbird resulted in no improvement. The combination of
all sensors (LiDAR, ETM+, SAR/InSAR, and Quickbird) was
Table 7
Results of all possible subsets regression models relating remote sensing metrics
and field-measured mean canopy height

Sensor(s) Coefficient of
determination
(r2)

RMSE Model

LiDAR 0.611 7.3 3.7+(0.3⁎MEANMAXHT)+
(0.4⁎MAXMAXHT)

QB 0.566 7.8 −183.2+(−0.01⁎MIN_QBPC1)+
(0.07⁎STDEV_QBPC1)+
(0.4⁎MEAN_QBPC3)

InSAR 0.454 8.7 17.3+(0.5⁎MEAN_SARHT)+
(91.9⁎STDEV_SARHT)

ETM 0.603 7.5 222.6+
(−148.8⁎MEAN_NDVI_1)+
(−0.2⁎MIN_PCA1_1)+
(−0.6⁎MEAN_PCA3)

LiDAR+QB 0.666 6.9 21.1+(0.2⁎MEANMAXHT)+
(0.3⁎MAXMAXHT)+
(−0.05⁎MIN_QBPC1)

LiDAR+
InSAR

0.611 7.3 3.7+(0.3⁎MEANMAXHT)+
(0.4⁎MAXMAXHT)

LiDAR+ETM 0.715 6.4 146.2+(0.4⁎MAXMAXHT)+
(−0.1⁎MEANCOVER)+
(0.1⁎MAX_PCA1_1)+
(0.5⁎STDEV_PCA1)+
(−0.1⁎MEAN MIN_PCA3)

QB+InSAR+
ETM

0.643 7.1 45.5 (−0.1⁎MIN_PCA1_1)+
(0.3⁎MEAN_SARHT)+
(−0.04⁎MIN_QBPC1)+
(0.05⁎STDEV_QBPC1)

LiDAR+QB+
InSAR+
ETM

0.715 6.4 112.3+(0.4⁎MAXMAXHT)+
(−0.1⁎MEANCOVER)+
(−0.1⁎MAX_PCA1)+
(−0.6⁎STDEV_PCA1)+
(0.5⁎MAX_PCA4)

In all cases, n=111 and p<0.001.

(0.2⁎MAX_SARHT)
LiDAR+ETM 0.631 3.2 −34.0+(0.3⁎SDMAXHT)+

(0.1⁎MAXMAXHT)+
(−0.1⁎MEANHOME)+
(−58.4⁎MAX_NDVI)+
(0.1⁎MAX_PCA2)

QB+InSAR+
ETM

0.563 3.5 7.8+(−0.04⁎MIN_PCA1)+
(0.2⁎MAX_SARHT)+
(0.2⁎STDEV_QBPCA)

LiDAR+QB+
InSAR+
ETM

0.640 3.2 24.3+(0.4⁎SDMAXHT)+
(0.07⁎MINCOVER)+
(−0.04⁎MINPCA1)+
(0.1⁎MAX_SARHT)+
(−0.03⁎MIN_QBPC3)

In all cases, n=111 and p<0.001.
the most accurate (r2 =0.83, RMSE=66.6mg/ha), while all
other sensors excluding LiDAR (SAR/InSAR, ETM, and
Quickbird) performed worse than LiDAR alone (r2 =0.72,
RMSE=84.2mg/ha).

5.2. Landscape scale

Images of mean large tree canopy height and biomass over
the entire study area were calculated over the spatial extent of
the 1 to 100% LiDAR samples using LiDAR where it existed
and the other remote sensing data sets (Quickbird, ETM+,
and SAR/InSAR) where LiDAR was not available. Mean
large tree canopy height and biomass were calculated from
each image; the results are plotted in Fig. 2. Mean canopy
height of large trees remained about the same as LiDAR
sample size increased (Fig. 2A), declining only about 1.5m as
the sample size approached 100%. Biomass of large trees
(Fig. 2B) increased fairly substantially, from about 155 to
175mg/ha.



Table 9
Results of all possible subsets regression models relating remote sensing metrics
and field-measured biomass

Sensor(s) Coefficient of
determination
(r2)

RMSE Model

LiDAR 0.773 75.3 −49.8+(6.6⁎MEANMAXHT)+
(−7.5⁎MINMAXHT)+
(18.9⁎MEANHOME)

QB 0.550 105.0 −3004.1+
(−480.1⁎MIN_QBNDVI)+
(−1.9⁎MIN_QBPC3)+
(6.7⁎MEAN_QBPC3)

InSAR 0.509 109.1 38.1+(9.5⁎MEAN_SARHT)+
(9.8⁎STDEV_SARHT)

ETM 0.490 111.2 1837.4+(−1.8⁎MEAN_PCA1)+
(−6.6⁎MEAN_PCA3)

LiDAR+QB 0.773 75.3 −49.8+(6.6⁎MEANMAXHT)+
(−7.5⁎MINMAXHT)+
(18.9⁎MEANHOME)

LiDAR+
InSAR

0.773 75.3 −49.8+(6.6⁎MEANMAXHT)+
(−7.5⁎MINMAXHT)+
(18.9⁎MEANHOME)

LiDAR+
ETM

0.796 71.3 −367.2+(5.5⁎MEANMAXHT)+
(−6.1⁎MINMAXHT)+
(18.8⁎MEANHOME )+
(−2.7⁎MINCOVER )+
(−1671.1⁎MEAN_NDVI)

QB+InSAR+
ETM

0.716 84.2 2448.1(−1866.6⁎MEAN_NDVI)
+(−1.0⁎MEAN_PCA1+
(11.6⁎MEAN_SARHT)+
(−0.4⁎MIN_QBPC2)+
(−3.1⁎MAX_QBPC3)

LiDAR+QB+
InSAR+
ETM

0.827 66.6 −950.1+(4.2⁎MEANMAXHT)+
(−5.4⁎MINMAXHT)+
(17.6⁎MEANHOME)+
(−2.3⁎MINCOVER)+
(−2464.0⁎MEAN_NDVI+
(2.3⁎MEAN_PCA3_1)+
(3.9⁎MEAN_SARHT)+
(−2.8⁎STDEV_SARBS)

In all cases, n=111 and p<0.001.

Fig. 2. Landscape scale canopy height (A) and biomass (B) of large trees as a
function of LiDAR sample size, 1–100%.

Fig. 3. Coefficients of determination (r2) values from regression of footprint
LiDAR observations of canopy height (A) and biomass (B) of all trees as
function of LiDAR sample size, 1–100%.
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5.3. Discussion

Once again, LiDAR has been shown to be effective in
estimating forest structure. One unique aspect of this study is
that LiDAR was shown to be effective in measuring height and
biomass of large trees, which are important components of
wildlife habitat and represent a key carbon reservoir. Quickbird
and SAR/InSAR did not perform nearly as well; this is not
surprising given that only LiDAR has the ability to provide an
accurate return from both the top and bottom of the canopy and
provide a volumetric response (via the height of the median
energy return or HOME). While the backscatter from other,
longer wavelengths RaDARs (e.g., C, L and P) are sensitive to
canopy volume, the X-band wavelength used in this study is
much less so. The InSAR height metric was less accurate at
predicting height and biomass than LiDAR height, possibly
because the X-band penetrated further into the top of the
canopy, causing a foreshortening of the height measurement. It
is also probable that at least some of the elevation values from
the DEM were corrupted by the canopy; LiDAR ground
elevation values are likely more reliable since we are confident
that the last return is actually coming from the ground.
However, other sensors did have significant utility in aiding
LiDAR in the prediction of canopy height. In contrast, the other
sensors did not contribute as much to the accuracy of the
biomass predictions.

ETM+, however, was surprisingly accurate at predicting
canopy height. Additionally, ETM+ and LiDAR appear to be
quite complementary, producing more accurate measurements
of all variables together compared to any other single sensor or
LiDAR/Quickbird and LiDAR/RaDAR combinations. ETM+
alone was fairly poor at predicting biomass, probably because of
signal saturation at high biomass levels. It is necessary to
remember that the structure metrics include only the largest
(>76cm dbh) trees; when compared to footprint level LiDAR
(from Hyde et al., 2005) with known errors accounted for (and
therefore in very close agreement with field data) that include all
trees, the combination of ETM+, Quickbird, and RaDAR
provides poor estimates of canopy height and even worse
estimates of biomass (Fig. 3).

At the landscape scale, as LiDAR sample size increases, the
estimate of the height of large trees stays about the same. If the
image containing the 100% LiDAR sample is used as a baseline
of height “truth”, then the canopy height images from RaDAR,
ETM+, Quickbird are reasonably accurate regardless of the size
of the LiDAR sample. In other words, the gaps in LiDAR
coverage are measured fairly accurately with the other sensors,
providing a reasonable approximation of canopy height.
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However, this is not true of biomass; gaps in LiDAR coverage
are not measured as accurately with the other remote sensing
data sets and the net result is a greater than 10% reduction in
total estimated biomass for the entire landscape.

Recall that the ultimate goal of this effort is to provide
spatially continuous maps of forest structure at the landscape
scale as a prerequisite for habitat suitability studies. Using the
statistical relationship developed between field and LiDAR plus
other remote sensing data sets for canopy height and biomass,
we created maps of each of these over the domain of the data
sets (Figs. 4 and 5). It is this mapping of forest structural
Fig. 4. Canopy height map from LiDAR and other re
characteristics at the landscape scale which we believe will be of
great benefit to future habitat studies.

5.4. Conclusion

LiDAR provides accurate estimates of stand level canopy
height and biomass at the stand (1ha) level even though it is
sampling, not mapping at this scale. Some improvements were
achieved by adding some or all additional remote sensing data
sets. However, these improvements come at a cost, including (1)
cost of data acquisition, (2) cost of data processing, and (3)
mote sensing data sets. The units are in meters.



Fig. 5. Biomass map from LiDAR and other remote sensing data sets. The units are in mg/ha.
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statistical certainty. The cost of acquiring and processing ETM+
is relatively minimal; the cost of acquiring (Quickbird) or
processing (InSAR) is not. Atmospheric and topographic
correction of passive optical data is also not trivial, requiring
computing power, time, and expertise.

It is not clear at this point whether or not estimates of big tree
height and biomass at the stand (1ha) level have more utility for
habitat modeling than do samples taken at the footprint scale. It
is possible that these maps do not provide any additional
predictive power for a given application, but there is no way to
know this a priori. Future work on this question by the authors is
forthcoming.
There are many other sensors available that were not used in
this study but nonetheless have great promise for the retrieval of
canopy structure. Only X-band radar was used in this study
because of the lack of availability of other bands at a fine
enough spatial resolution. Other longer wavelength bands
would likely penetrate foliage and provide strong returns from
the trunks of big trees. Multi-angle sensors such as POLDER or
MISR would also provide information about canopy height,
while hyperspectral data sets could improve biomass estimates.
Also, only simple vegetation indices were computed from
multispectral data; other, more sophisticated algorithms could
be used, such as automated crown detection. Only simple
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LiDAR metrics were used; there is a wealth of vertical structure
information contained in waveforms that are largely underused
by this, or any other, study. In addition, canopy volume, basal
area, tree density, species diversity, and other such measure-
ments of structure would be useful for wildlife habitat studies.
Finally, a truly comprehensive and complete study of multi-
sensor fusion would include more than statistical models;
physical models should be developed and used to explain the
causal mechanisms behind sensor returns.
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