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The goal of this study was to evaluate the contributions of forest and landscape structure
derived from remote sensing instruments to habitatmapping. Our empirical data focused at
the landscape scale on a test site in northern Michigan, using radar and Landsat imagery
and bird-presence data by species. We tested the contributions of multi-dimensional forest
and landscape structure variables using GARP (Genetic Algorithm for Rule-Set Production), a
representative modeling methodology used in biodiversity informatics. For our multi-
dimensional variables, radar data were processed to derive forest biomass maps and these
data were used with a Landsat-derived vegetation type classification and spatial
neighborhood analyses. We collected field data on bird species presence and habitat for
northern forest birds known to have a range of vegetation habitat requirements. We
modeled and tested the relationships between bird presence and 1) vegetation type, 2)
vegetation type and spatial neighborhood descriptions, 3) vegetation type and biomass, and
4) all variables together, using GARP, for three bird species. Modeled results showed that
inclusion of biomass or neighborhoods improved the accuracy of bird habitat prediction
over vegetation type alone, and that the inclusion of neighborhoods and biomass together
generally produced the greatest improvement. Themaps andmodel rules resulting from the
multiple factormodels were interpreted to bemore precise depictions of a particular species
habitat when compared with themodels that used vegetation type only. We suggest that for
bird species whose niche requirements include forest and landscape structure, inclusion of
multi-dimensional information may be advantageous in habitat modeling at the landscape
level. Further research should focus on testing additional variables and species, on further
integration of newer radar and lidar remote sensing capabilities withmulti-spectral sensors
for quantifying forest and landscape multi-dimensional structure, and incorporating these
in biodiversity informatics modeling.
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1. Introduction

Biodiversity and ecosystem informatics is an emerging field
that has been defined as “the creation, integration, analysis,
and understanding of information regarding biological diver-
sity” (Biodiversity Informatics, 2004). A core need of biodiver-
sity informatics is the capability to produce maps not only of
known locations of biological species occurrences, but also
Bergen).

er B.V. All rights reserved
potential locations of these the same species based on similar
habitat properties (Pennisi, 2000). To accomplish this, biodi-
versity informatics increasingly relies on inductive methods
and models to map habitat and range of species. Several
modeling approaches, including GARP (Genetic Algorithm for
Rule-Set Production) use museum or field species presence
data in conjunction with environmental layers. To construct
realistic models and output habitat maps, input environmen-
.
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tal layers describing essential habitat requirements or range
characteristics are required.

At landscape to regional scales, landscape structure is
increasingly believed to be a primary factor determining the
habitat preferences of species (Dunning et al., 1992; Wiens,
1995; Boulinier et al., 2001). In addition to vegetation type,
landscape patch metrics such as shape, size, and edge, are
among thevariables contributing to aquantitativedefinitionof
landscape structure (McGarigal and Marks, 1995), but spatially
continuous geostatistical methods and neighborhood-based
descriptions for categorical or continuous data may also be
employed (Gustafson, 1998). This component of landscape
structure has a largely horizontal definition. Quantifying
vertical or volumetric structure creates a multi-dimensional
description. For example, tree canopyheight, biomass, density,
understory presence, and/or canopy layering are also impor-
tant structural variables for many forest bird species (Morgan
and Freedman, 1986).

Biodiversity informatics uses spatial data of land cover and
vegetation derived from remotely sensed datasets (Gottschalk
et al., 2005). The capabilities of multi-spectral passive optical
sensors such as Landsat, ASTER (Advanced Spaceborne
Thermal Emission and Reflection Radiometer), SPOT (Systeme
Pour l'Observation de la Terre), or MODIS (MODerate Resolu-
tion Imaging Spectroradiometer), are useful for discriminating
vegetation type and horizontal structure. Newer radar and
lidar sensors have the capability to directly quantify vertical
and volumetric dimensions of vegetation structure. The
fusion of radar or lidar capabilities with widely available
optical data, such as that from Landsat, and interpreting them
for multi-dimensional structural characteristics is generating
significant interest for describing forest and landscape struc-
ture (Bergen et al., 2006).

1.1. Study objectives

Our goal was to assess the value of integrating radar and
optical remote sensing data to model multi-dimensional
habitat space. We used empirical data at the landscape scale
for a test site in Northern Michigan, using SIR-C radar and
Landsat imagery and bird species data observed in the field to
map bird habitat characteristics. Our primary modeling
methodology was based on GARP, a representative modeling
method used in biodiversity informatics. Our specific objec-
tiveswere to: 1) createmulti-dimensional vegetation structure
and bird species datasets; 2) develop models and test for the
influence of forest and landscape structure on habitat predic-
tions, 3) assess output model accuracies, and 4) interpret the
usefulness of forest and landscape structure environmental
layers for habitat mapping.

1.2. Background

Birds can be particularly responsive to characteristics of forest
multi-dimensional structure. While some bird species are
generalists, many species have narrower ecological niches.
Along with the composition of vegetation, niche discriminat-
ing characteristics can include the amount and configuration
of horizontal patches (James andWamer, 1982; McGarigal and
McComb, 1995; Flather and Sauer, 1996), patch area (Howe,
1984; Boecklen, 1986; Freemark and Merriam, 1986), edge
effects (Flaspohler et al., 2001; Chalfoun et al., 2002), and forest
cover and fragmentation (Trzcinski et al., 1999).

Observations have also shown that suitable habitat for a
bird species may be based on volumetric and vertical
characteristics of the vegetation (Morgan and Freedman,
1986). These include stand age, height or biomass (Probst
and Weinrich, 1993; Green and Griffiths, 1994; Nelson and
Buech, 1996; Buchanan et al., 1999), shrub versus forest
structure (Goransson, 1994), structure of a shrub layer within
forests (Reid et al., 2004), and effects of forest thinning (Siegel
and DeSante, 2003). One prior study focused on radar-based
mapping of vegetation structure and bird diversity, where bird
species and abundance were observed to change across both
vegetation type and structural gradients. The authors con-
cluded that somemeasure of vegetation structure is needed to
understand how birds perceive habitat (Imhoff et al., 1997).

Both optical and radar image data are potentially suitable
for classifying land cover and vegetation and providing maps
of horizontal landscape structure. However, classifications
derived from optical remote sensing instruments such as
Landsat at fine (30 or 60 m) spatial resolutions (Vogelmann
et al., 2001), and MODIS at coarser (1 km) spatial resolutions
(Friedl et al., 2002; Hansen et al., 2005) are more widely
available. Of these, the sensor used is determined by the
spatial scale of the question, e.g. landscape, regional or global.
Vegetation classifications derived from 30 m Landsat data are
appropriate for landscape to regional-scale analysis and, in
forested areas, are often produced at a level of detail equiv-
alent to forest communities (Anderson Level II), and some-
times to species or species groups (Anderson Level III;
(Anderson et al., 1976). Land-cover and vegetation classifica-
tions may also serve as the basis for calculating metrics of
landscape horizontal structure.

Of all sensor types, the active sensors radar and lidar have
the greatest capabilities for directly describing vegetation
vertical and volumetric structure. Active sensors transmit and
receive their own energy rather than relying on reflected
sunlight to form an image, and radar sensors do so in the
longer microwave portion (∼1 mm to ∼1 m wavelengths) of
the electromagnetic spectrum. Radars are described by their
wavelengths (e.g. C-band at approximately 6 cm, L-band at
approximately 23 cm); transmit-receive polarizations (hori-
zontal or vertical propagation of radar waves); energy inci-
dence angles with respect to Earth's surface; and spatial
resolutions (Lillesand et al., 2004). Radar reflection (called
backscatter coefficient, or σ°, in decibels) at a given wave-
length, polarization, and incidence angle is determined by
earth terrain structural properties and electrical properties. In
the case of forest vegetation, structural properties are the
dominant factor; where the specific contributing structural
properties of vegetation canopies are 1) size distribution of
components (for trees main stem, branches, and foliage)
relative to wavelength, 2) orientation of components, and 3)
number of reflecting components (Ulaby et al., 1986).

This dependence of radar backscatter on the structural
properties of vegetation, in addition to the capability of long
off-nadir wavelengths to penetrate through the vegetation
canopy, is the basis for radar's ability to provide direct
estimates of vegetation structure (Pierce et al., 1998).
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Numerous studies have now demonstrated the relationship
between vegetation structural parameters and radar back-
scatter. These studies show that typically there is a positive
relationship between radar backscatter coefficient (in dBs) and
field-measured dry biomass (in kg/m^2), meaning that forests
of higher biomass will have greater radar backscatter. Dif-
ferent vegetation structural types, for example, conifer or
deciduous, exhibit somewhat different forms of this relation-
ship. Extinction (leveling off of backscatter) may occur at very
high biomass quantities of a particular forest structural type
and varies by type. Some studies have used empiricalmethods
to derive parameters such as biomass, and to map these as
continuous data over regional landscapes (Dobson et al., 1995;
Bergen, 1997). In addition to radar backscatter methods, radar
interferometry can be used to directly estimate forest height
and, like lidar, may have potential for describing within-
canopy vertical structure (Treuhaft and Siqueira, 2004).

Modeling methods for habitat distribution (Guisan and
Zimmermann, 2000) based on species presence data have
included range and envelope methods (e.g. BIOCLIM) (Busby,
1991); regression-based generalized linear models or logistic
regression (GLM) and generalized additive models (GAM)
(Austin, 2002); genetic algorithms (GAs) such as GARP (Payne
and Stockwell, 1996; Anderson et al., 2003); and several novel
machine-learningmethods suchas neural networks, regression
trees or entropy models (Elith et al., 2006; Garzón et al., 2006).
Algorithms have been combined, for example the GARP
Modeling System (GMS) has sometimes been called a “super-
algorithm” in that it uses several of the methods above in its
formation of species distribution models by combining sets of
rules using a GA approach (Stockwell and Peters, 1999; Peterson
et al., 2002). The GA approach refers to the idea that solutions to
modeling problems in amachine environment evolve the same
way organisms evolve through natural selection. A set of
possible solutions are formed and, through a series of iterations
that include, for example, mutations, deletions, and crossing
over, the solutions are modified and tested until the best
solution is found (Stockwell and Peters, 1999).
2. Methods and materials

2.1. Study area

The study was carried out in the Michigan Forests Test Site
(MFTS). The MFTS is located in the eastern part of Michigan's
Upper Peninsula largely within the Hiawatha National Forest
(Fig. 1). The MFTS was established as a NASA test site for the
SIR-C (Shuttle Imaging Radar-C) instrument flown on the
space shuttle in 1994. The site is approximately 20 km wide,
and centered on 46.39° N, 84.88° W. GIS datasets of vegetation
type and radar-derived forest structure are available for the
site, as are field data of composition and structure for 70 four-
hectare forest test stands (Bergen et al., 1995).

The forests of theMFTS are characterized by pole tomature
northern hardwoods and red and jack pine plantations, inter-
spersed with younger even-aged conifer and aspen stands,
plus lowland communities. The mostly forested landscape is
stable with relatively little disturbance, i.e. limited timber
harvest primarily in conifer plantations, gap dynamics in older
northern hardwoods stands, and overall slow northern
latitude growth.

2.2. Remote sensing data preparation

The land-cover and vegetation type environmental layer
(hereafter called vegetation type layer) of the study site was
acquired from the widely-used U.S. National Land Cover Data
(NLCD) dataset (http://www.epa.gov/mrlc/). These data were
originally derived from Landsat Thematic Mapper (Landsat TM)
scenes taken 1992–1994. The positional accuracy of this 30 m
raster data was designed to be ±0.5 pixels or ±15 m (Lillesand
et al., 1998). NLCD thematic (vegetation class) overall accuracy
for the U.S. Great Lakes region was 83% at Level I and 64% at
Level II (with low accuracies in agricultural classes lowering the
overall accuracy and with higher accuracies in forest classes)
(Wickham et al., 2004). The vegetation type layer was recoded
fromAndersonLevel III classes to nineAnderson Level II classes
to be congruent with our field and biomass layer data (Fig. 2a;
Table 1). The nine classes include four forest type classes, three
non-forest vegetation classes, and two (negligible at b1%) non-
vegetated classes.

To represent vegetation spatial structure, two different
30 m raster layers – majority and variety – were created in
ArcGIS (ESRI, 2002) using neighborhood statistics on the
vegetation type layer. For each cell in the input vegetation
type layer, neighborhood functions compute a statistic based
on the values of the surrounding cells within a specified
distance and this value is then sent to the output grid. Our
neighborhoods approximated a circle with a 6-cell radius,
slightly greater than the bird survey plots. The majority
statistic is determined by the vegetation type that occurs
most often in the neighborhood. In this case, the cells of the
output grid were converted to the type of vegetation most
often occurringwithin the specified neighborhood, whichmay
be the same value as the input grid (Fig. 2b). The variety
statistic determines the number of unique vegetation types
within a neighborhood; therefore, the cells in the output map
have a number value that represents how many (1–9 in this
case) different kinds of vegetation were within the specified
distance (Fig. 2c).

Biomass is a particularly useful integrative variable for
vegetation age, height and density when combined with vege-
tation type. Biomass was also our best dataset in terms of
previous validation, and we used biomass to test for the in-
fluence of forest volumetric structure. The original data for our
radar-derived biomass layer were compiled in a project using
C- and L-band SIR-C radar data taken over the MFTS which
had been orthorectified to a positional accuracy of better
than ± b one 25 m pixel). In the SIR-C project to quantify and
map biomass, we first measured field forest composition and
structure in 70 four-hectare geo-referenced (positional accu-
racy better than 10 m) forest test stands (Bergen et al., 1995).
These field estimates of stand height, basal area, crown
biomass, trunk biomass and total biomass had error rates of
15%orbetter (Bergenetal., 1995).Total abovegroundbiomass for
the 70 forest test stands ranged from b2.5 kg/m2 for clear-cut
seedling stands to 27.3 kg/m2 for a mature northern hardwoods
stand (Bergen et al., 1995). These figures are also representative
of the range of total biomass in the overall study site.

http://www.epa.gov/mrlc/


Fig. 1 –Michigan Forests Test Site (MFTS). The inset map shows the location of the study site in the upper Great Lakes region,
USA. The main map background is derived from Landsat data used in this study and depicts general land-cover types of the
region. The outlined rectangle corresponds to the path and swath of the radar sensor and to the test site boundaries.
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Next, vegetation-class-specific inversion algorithms were
developed by least squares regression of the radar image
backscatter for the test stands on field-measured test stand
structural parameters. Inversion algorithmswere developed for
estimatedheight, basal area, crownbiomass, and trunkbiomass
and then these were combined to produce an estimate of total
biomass (Fig. 3). Analysis showed that aboveground biomass
over the study site had been estimated with an overall RMSE of
better than 1.4 kg/m2 dry wt (biomass range 0 to 30 kg/m2)
(Dobson et al., 1995). Application of inversion algorithms was
extended from the test stands, upon which they were devel-
oped, to the entire radar image resulting in a spatially contin-
uous map of biomass quantities at a 25 m spatial resolution
(Bergen and Dobson, 1999).

Some additional work was needed on the radar-derived
biomass layer for use in this project. Available vegetation type
and biomass data were both from approximately 1994 pro-
viding congruence in the spatial datasets. However, our bird
data were from 2002. For this reason, while our study and
output maps can be interpreted as to dependence of bird
species habitat selection on forest and landscape structure in
terms of vegetation type and biomass, they should not be
interpretedwith respect to absolute biomass values. TheMFTS
is a relatively stable remote area, but we did not use any areas
of significant intervening disturbance as training or testing
sites. Other processing included resampling the pixel size of
the biomass image from 25 m to 30 m for co-registration with
the 30 m Landsat data. Nearest neighbor resampling was used
to preserve original data values. The site biomass range of
approximately 0–30 kg/m2 is typical of the broader region, and
biomass layer values were linearly scaled to 0–255 (Fig. 2d).

2.3. Bird data collection and analysis

Bird presence surveys were conducted July 2002 in the same
forest test stands used to develop the biomass layer (Gilboy,



Fig. 2 – Images used or created through this study: a) vegetation type layer, b) majority layer, c) variety layer, d) biomass layer,
e) output composite habitat map for red-eyed vireo modeled with vegetation and biomass.
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2003). A total of 61 stands were selected to represent the range
of forest composition and structure in the study site. Early
morning surveys were conducted within the stands using the
circular-plot method (Reynolds et al., 1980) to detect bird
presence and absence. Bird surveys were also conducted by
the U.S. Forest Service, Hiawatha National Forest during June/
July 2002 (Langstaff, 2002) using the same measurement
protocol on 71 additional sites.
Of the 57 bird species recorded during the field surveys, ten
had enough individuals to allow reliable analysis with GARP
(Stockwell and Peterson, 2002). Three of thesewere nominated
for analysis based on their differences in habitat requirements.
A chi-square test was run on our field data for the three
potential bird species and vegetation types to confirm depen-
dence on vegetation type. A significance value of 0.05 was
selected and p-values less than this indicated a relationship



Table 1 – The distribution in percent of forest and other
land-cover types in the MFTS (column one) and the
distribution of forest types within just the forested
component of the MFTS (column two)

Vegetation type Percent of total
area (%)

Percent of forested
area (%)

Upland conifer 21.7 26.0
Lowland conifer 11.0 13.2
Northern

hardwoods
20.2 24.2

Aspen/lowland
deciduous

30.6 36.6

Grassland 4.4 –
Agriculture 9.6 –
Wetland 1.2 –
Urban/barren 0.9 –
Water 0.4 –

100 100

Data is derived from the vegetation type layer used in this study.
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between bird species and vegetation type. Sixty pine warblers
(Dendroica pinus), 75 chipping sparrows (Spizella passerina), and
55 red-eyed vireos (Vireo olivaceus) were detected and these
geo-located observations formed the bird point location data
for input into GARPmodels. Each geolocated bird survey point
was plotted in ArcView (ESRI, 2002) software in a geographic
(latitude/ longitude) projection for compatibility with Desktop
GARP.

To support selection of input variables and assessment of
results we collected information about known habitat char-
acteristics of the three bird species. The USFS NORTHWOODS
database contains summary habitat requirements for 389
species of birds and other animals in the upper Great Lakes
region USA in 20 aquatic and terrestrial habitat types (Benyus
et al., 1992). The database was derived from verified field-
sighting data combined from regional National Forests and
contains species names, their habitats, season of occurrence,
abundance, and versatility rating (1–12), the latter being the
number of different types of region-wide habitat the species
can use. If 50% or more of the reporting Forests listed a species
Fig. 3 –Methods for deriving biophysical parameters height and b
this study L- and C-band image backscatter were regressed on fi
were then applied to the entire image. Separate inversion algorit
crown biomass, and trunk biomass, and then these were comb
continuous quantity.
as using a habitat type then the species was listed as using
that habitat in NORTHWOODS.

The pine warbler is often considered the most character-
istic breeding bird in the pine forests of Eastern North
America (Evers, 1991). NORTHWOODS reports a versatility
rating of 1 for the PIWA and lists mature upland coniferous as
its only habitat. The chipping sparrow is one of the most
widespread and abundant sparrows breeding in the United
States and Canada. The chipping sparrow prefers borders of
natural forest openings, edges of water bodies, open wood-
lands and weedy fields and NORTHWOODS reports a versa-
tility rating of 6 for this bird (Middleton, 1987). The red-eyed
vireo is one of the most common songbirds within the
woodlands of Eastern North America and the most common
vireo species found breeding in Michigan (Payne, 1983) with a
NORTHWOODS versatility rating of 7. The red-eyed vireo
prefers mature deciduous and mixed deciduous–coniferous
forests, and is sometimes found in younger forests of the
same types.

Habitat suitability maps (hereafter referred to as NWDVEG
maps) were constructed for each of the three bird species
using the habitat vegetation type preferences listed in
NORTHWOODSmatched with our Landsat-derived vegetation
type layer. This represents a deductive approach to habitat
mapping using only vegetation type spatial data as input.
These deductive maps were constructed for eventual statis-
tical and visual comparison with the vegetation-only predic-
tions and output maps generated by GARP.

We derived several metrics to describe the match between
bird species point locations and suitable areas in the NWDVEG
maps, including number of bird point locations that fell into
suitable habitat areas on the NWDVEG maps, the percent of
the test site mapped as suitable habitat, percent improvement
of the NWDVEGmap over a chance model, and the vegetation
types NORTHWOODS indicated as suitable habitat.

2.4. Modeling with GARP

The GARP program uses the georeferenced species point loca-
tions in combination with environmental data layers to create
iomass from radar. In the radar backscatter method used in
eld-measured samples to create inversion algorithms which
hms and mapped estimates were made of height, basal area
ined to produce an estimate of total biomass mapped as a
,
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models of species habitat and range (Stockwell and Noble, 1992;
Payne and Stockwell, 1996; Stockwell and Peters, 1999).
The algorithm software has been made broadly available
through Desktop GARP, available at http://www.lifemapper.
org/desktopgarp (Scachetti-Pereira, 2002). GARP modeling can
be grouped into four main steps: 1) data preparation, 2) model
development, 3) model application and validation, and 4)
communication and output (Payne and Stockwell, 1996; Gilboy,
2003).We ran these sequences of steps separately for eachof the
bird species in combination with different environmental grid
layers: 1) vegetation only, 2) vegetation and biomass, 3) vege-
tation and neighborhoods, and 4) all environmental variables.

In the data preparation step, the modules RASTERIZE and
PRESAMPLE prepare the input species data for use in GARP.
RASTERIZE converts species point data into raster layers.
Duplicate species points within one cell do not provide more
information, so are removed by absorption into a single
observation (Stockwell and Peters, 1999). If one or more points
fall within a cell, the cell takes a presence value; otherwise it
remains zero. PRESAMPLE takes the newly created raster layers
and creates split training and testing data sets (we chose a
50/50 split) by randomly sampling the raster data set of all
data points for a bird species, prepared in RASTERIZE. The
training set is necessary to construct a model while the tes-
ting set allows for the assessment of the model's accuracy.
PRESAMPLE outputs a set of 2500 points, 1250 of which are re-
sampled from actual input species location input data. The
other 1250 are re-sampled from the total geographic space to
replicate absence data, termed “background”. PRESAMPLE thus
creates large sets of presence and background data regardless
of howmany location points were input into GARP (Stockwell
and Peters, 1999).

The heart of the GA process is in the model development
steps. After the training set is generated by PRESAMPLE, it is input
into thenext programINITIAL. This createsan initialmodel that is
the starting point for the GARP algorithm. The initial model is a
set of rules that influence the development of the subsequent
models.WithinGARP, thereare four typesof inductive rules that
are the basis for modeling: atomic, BIOCLIM, range and logit
rules. The simplest form of the rules is the atomic rule where
only a single variable valuewithin the precondition of the rule is
used. An example atomic rulewould be: if the vegetation is upland
conifer, then the species is present. The second format of rules is the
BIOCLIM rules. A BIOCLIM rule is developed by enclosing the
rangeof the environmental values inanenvelopewhere species
may occur. If a point is outside the range of tolerance, then the
species is predicted to be absent. Only absence can be inferred
because fallingwithin the range of tolerancedoesnot guarantee
the presence of a species. The third type of rule, a range rule, is a
generalization of the BIOCLIM rule that allows for negation. The
final class of rules, logit rules, is based on logistic multiple
regression models where there is a positive dependence bet-
ween species presence and model variable/s.

Continuing themodel development step, the fourth module
EXPLAIN applies the GA to improve the initial models, iterates,
and then outputs the best of these models. In our procedures,
eachbird species-variable layer/s combinationwas run 20 times
with 1000maximum iterations per run. During iterations, GARP
continuously tests theutility of the current set of rules,modifies
rules, and terminates when the rule archive no longer changes,
or reaches 1000 iterations, whichever comes first. Until this
termination point, the program continues to create new
populations by modifying archived rules with genetic recombi-
nation. The three heuristic operators are join, crossover, and
mutate. Join is simply the joining of two rules to produce a
longer rule. The crossover operation mimics the genetic
exchange of real genes when two structures in the population
exchange a part of their binary code. In this way, two new rules
are created. The mutation operator can change a rule by
randomly changing a single value. After new rules are made
bygenetic recombination,GARPmeasures the fitnessof thenew
rules and themore successful an operator is, themore it will be
used in future generations of the rule-sets.

Model application and validation begins with the VERIFY

module. This program tests the predictive accuracy of the
model developed from the training set on the original training
set and then also on the reserve testing set that was created in
PRESAMPLE. The results of these are confusion matrices, which
record the proportions of errors and accuracies made by the
model (Stockwell and Peters, 1999). When applied to the
testing data, accuracy is independent of the data used to
formulate the rules and thus considered a more reliable
estimate of how well the rules worked. Training and testing
statistics were output as contingency matrices for each of our
models, percent accuracies were calculated, and chi-square p-
values provided. The second part of model application and
validation is carried out through the module PREDICT which
takes the newly createdmodel and forms a prediction for each
value and cell as applied to the environmental layers.

Model communication and output includes both spatial
data and text ofmodel rules. In this final step themodule IMAGE

converts the calculations produced in PREDICT into image
formats for visualizationas predicted suitability layers. Finally,
the TRANSLATE function screens the rule-sets and eliminates
rules that were not used to make predictions. By doing this,
only the most influential rules are presented to the user and
the user is provided with files containing information on the
rule-sets (or model) used to generate the spatial layers.

We ran eachmodel 20 times (with 1000 iterationsper run) for
a given combination of bird species and environmental layers,
resulting in 20 separate output maps. Each set of 20 maps was
combinedto formacompositemapthat indicates thenumberof
runs out of 20 that a cell was predicted to contain suitable
habitat for the species in question. These compositemapswere
made for each of the overall model runs— four environmental
layer combinations for each of three bird species resulting in 12
composite maps of predicted bird species habitat.

2.5. GARP model accuracies and evaluation

Models were evaluated in several ways. First, training and
testing accuracies and p-values output by the VERIFY module
were observed and compared. The p-value calculated by
GARP is the result of a chi-square test, which uses the test
points set aside by GARP and the area predicted presence
(e.g. predicted as habitat) by the output model. Values less
than 0.05 indicate that GARP performed significantly better
than a random model in terms of the accuracies. The training
and testing accuracies represent how well the model did in
predicting habitat for the bird location points used to

http://www.lifemapper.org/desktopgarp
http://www.lifemapper.org/desktopgarp
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construct the model (training) and for the reserved points not
used in model construction (testing).

In a different form ofmodel evaluation, bird point locations
were overlaid on both NWDVEG and GARP output maps to
compare the proportion of points that fell within the presence
area in the maps to the expected proportion if the model were
random. This resulted in statistics of the percent improve-
ment of the NWDVEG and GARPmodels over a randommodel.
In the case of the vegetation only model runs, the GARP maps
were further compared to the NWDVEG maps as a test of the
influence of the modeling method on results.

If environmental layers are relevant to habitat requirements,
use of more than one layer generally increases accuracy of
predictions and a sill is often reached at four or five layers
(Peterson and Cohoon, 1999). As a final step, we examined both
the output maps and the model rule-sets output by GARP to
further examine why GARP predicted certain areas as possible
habitat using the different multi-dimensional environmental
layer combinations, and to evaluate if they conformed to our
expectations based on published ecological niche descriptions
and our field observations of bird species habitat use.
3. Results

3.1. Bird data relationships to vegetation

For all three species, chi-square analysis of field-observed bird
locations and vegetation produced p-values less than 0.001.
Interpretation of the chi-square results showed that the pine
warbler was highly correlated with mature upland conifer
(pb0.001) and not with deciduous. This is in agreement with
NORTHWOODS and the literature. Our field data show that
there was also a slight correlation between the pine warbler
and young conifer. For the chipping sparrow, NORTHWOODS
lists mature upland coniferous, mature upland deciduous and
shrub-sapling opening as three possible habitats. In our field
data, the chipping sparrowwas correlatedwithmature upland
conifer, young conifer (which could also be described as shrub-
sapling openings; pb0.001), and not with deciduous. Chi-
square results showed that the red-eyed vireo was highly
correlated with northern hardwoods (pb0.001), consistent
with NORTHWOODS. Chi-square analysis also showed a
correlation with mature upland conifer which was not one of
Table 2 – NWDVEG map analysis

Species Points in presence
areas (%)

Image area desig
as habitat (%

Pine warbler 50.0 21.7
Chipping sparrow 81.3 67.0

Red-eyed vireo 49.1 50.8

Shown in columns 1–5 are 1) bird species, 2) the percent of bird sample loca
percent of the test site mapped as suitable habitat, 4) the percent improv
vegetation layer types that NORTHWOODS indicated as suitable habitat.
the several habitats listed in NORTHWOODS, althoughmature
mixed (mixed conifer–deciduous overstory) was listed as
possible habitat. The mature upland conifer areas we sur-
veyed did not have a mixed overstory, but some did have a
significant deciduous understory.

The NWDVEG maps also served as an indicator of the
relationship of the three bird species to vegetation type. Two
of the three NWDVEG maps with actual data points overlaid
performed somewhat better than random, and the NWDVEG
map for the red-eyed vireo performed worse than random.
The latter can be attributed to the red-eyed vireos in our site
being found inmature upland conifers (not mapped as habitat
based on NORTHWOODS descriptions) with substantial de-
ciduous undergrowth (Table 2).

3.2. GARP models training and testing accuracy

Training accuracies for the GARP models of the three bird
species for the different input vegetation and structural data
combinations ranged from 62–85%; testing accuracies ranged
from 59–84% (Table 3). For 10 of the 12 models, p-values were
less than 0.05, indicating that GARP performed significantly
better than a random model for most of the runs. The two
cases in which the p-values were slightly greater than 0.05,
were the two red-eyed vireos with only 1–2 data layers (∼0.08).
All of the GARP model training and testing values increased
between 1 to 22 percentage points when more environmental
layers of multi-dimensional habitat were added (Table 3). The
highest training and testing values of the 12 models occurred
when all four of the environmental layers were used.

3.3. GARP map output

Fig. 2e and Table 4 provide an example of one output map and
accompanying summary table. Shown are results for the red-
eyed vireo modeled with vegetation and biomass. As an
example of how this output is interpreted, this GARP model
using vegetation and biomass selected 75.2% of the cells of
upland conifer of as habitat 100% of the time and selected
51.3% of the cells of northern hardwoods as habitat between
51 and 75% of the time. Maps and summary tables were
constructed for all species-variable combinations (Gilboy,
2003), and compared with model rule-sets and published
habitat descriptions.
nated
)

Improvement over
chance model (%)

Vegetation layer
types

28.3 Upland conifer
14.3 Upland conifer

Lowland conifer
Northern hardwoods
Grassland/shrubland
Agriculture

1.4 Northern hardwoods
Aspen/lowland deciduous

tions that fell into suitable habitat areas on the NWDVEGmaps, 3) the
ement of the NWDVEG map over a chance model, and 5) the Landsat



Table 3 – GARP accuracy average statistical results of the
20 individual presence/absence maps modeled with bird
species sample points and different combinations of
environmental layers

Training
accuracy (%)

Testing
accuracy (%)

P-
value

Pine warbler
Vegetation only 62 59 0.002
Vegetation and biomass 73 64 0.035
Vegetation and

neighborhoods
82 80 0.000

All environmental layers 84 81 0.000

Chipping sparrow
Vegetation only 77 77 0.000
Vegetation and biomass 83 79 0.000
Vegetation and

neighborhoods
85 80 0.000

All environmental layers 85 84 0.000

Red-eyed vireo
Vegetation only 63 60 0.083
Vegetation and biomass 69 61 0.081
Vegetation and

neighborhoods
71 63 0.015

All environmental layers 75 66 0.007
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When the GARP composite maps of different variable
combinations and for each species were compared to each
other several trends were observed (Table 5). First, the addition
of the biomass layer tended to reduce the amount of the image
area designated as suitable habitat as compared with e.g.
vegetation only. The inclusion of neighborhoods layer generally
increased the amount of area designated as suitable habitat.
The inclusion of all structural layers increased the amount of
area designated as suitable habitat over vegetation alone. In
almost all cases, the inclusion of the additional structural
variables increased the percent improvement of the model of a
chance model.
Table 4 – Summary table of the GARP model for red-eyed
vireo using vegetation and biomass

Percent of presence cells of each vegetation type by
presence category

Vegetation
type

Presence category

0% 1–
25%

26–
50%

51–
75%

76–
99%

100% Total
(%)

Upland conifer 1.0 10.2 1.1 2.1 10.4 75.2 100
Lowland conifer 8.7 72.5 18.8 – – – 100
Northern

hardwoods
3.5 31.2 13.9 51.3 – – 100

Aspen/lowland
deciduous

12.3 60.3 27.4 – – – 100

Grassland 42.8 57.0 0.2 – – – 100
Agriculture 97.0 3.0 – – – – 100
Wetland 71.6 28.4 – – – – 100
Open water 34.6 65.2 0.2 – – – 100
Urban/barren – 44.2 55.8 – – – 100
4. Discussion

Further interpretation of composite maps together with out-
put rule-sets illuminated more specifically why certain multi-
dimensional environmental layer combinations improved a
particular bird species habitat map. Some of the most im-
portant relationships are highlighted in the discussion below
for each bird with respect to its four GARP models.

4.1. Pine warbler

In the vegetation only GARP model for the pine warbler, the
upland conifer vegetation type was selected as the primary
habitat and all upland conifer cells were considered presence
in 100% of the compositemaps. For the pinewarbler, this is the
most appropriate habitat according to the literature. Some
grassland/shrubland was also chosen as potential habitat by
GARP. During surveys, ten pine warblers were detected in
young conifer stands, and these areas could have been
mapped on the Landsat-derived vegetation type layer as
either upland conifer or grassland/shrubland. Although not
listed as habitat by NORTHWOODS, pine warblers have been
previously observed in young pine when their preferred
habitat is not available (Rodewald et al., 1999).

In the pine warbler vegetation and biomass model, the
upland conifer cells were divided into different presence cate-
gories instead of just the 100% category as in the vegetation
only model. Very low biomass value cells were rarely selected.
Since the pine warbler's preferred habitat is mature pine, the
GARP model typically selected out the youngest pines as
inappropriate, thus predicting amore precise distributionmap
than classifications based only on vegetation type. However,
some Landsat-classified grassland/shrubland cells were se-
lected as habitat. Even though this is not the pine warbler's
preferred habitat, our surveys confirmed that they did occur
there. Some young conifer areas, then, could be described as
secondary habitat for the pine warbler based on GARP
vegetation and biomass layers and fieldwork.

In the vegetation and neighborhoods model for the pine
warbler, more than half of the upland conifer was selected as
habitat 100% of the time, compared to only 1.18% of upland
conifer being chosen as habitat 100% of the time in the vege-
tation and biomass model. This reflects influence of neigh-
boring cells. In order for a cell to be considered presence
habitat, the rules stated that it usually needed to be upland
conifer, but cells that were classed as lowland conifer,
northern hardwoods, and aspen/lowland deciduous in the
vegetation type layer AND surrounded by upland conifer cells
resulted in a majority value for upland conifer and were
thereby given a presence prediction. This means that even if a
certain 30 m vegetation type cell may not be appropriate
habitat by itself, if it was surrounded by upland conifer, the
chances of it being suitable habitat increased, thus increasing
the area of coniferous forests for use as habitat for the pine
warbler.

For the pinewarblermodel with all layers,most atomic and
BIOCLIM rules suggested a range of biomass values for
presence prediction, yet required the vegetation type and
majority value to be upland conifer. In light of this, either the
GARP predictions modeled with neighborhood layers, or with



Table 5 – GARP map and rule-set analysis

Points in
presence areas

(%)

Image area
designated habitat

(%)

Better than
chance model

(%)⁎

Rules used Vegetation types
selected N50% of

time

Pine warbler
Vegetation only 66.7 26.1 40.6/12.3 All 4 Upland conifer

Grassland/shrubland
Vegetation and

biomass
65.0 20.7 44.3 All 4 Upland conifer

Vegetation and 88.3 36.8 51.5 logit, BIOCLIM, range Upland conifer
neighborhoods

All layers 88.3 34.6 53.7 logit, BIOCLIM, range Upland conifer

Chipping sparrow
Vegetation only 78.7 22.5 56.2/41.9 BIOCLIM, atomic Upland conifer
Vegetation and

biomass
73.3 12.4 60.9 BIOCLIM, range, atomic Upland conifer

Vegetation and
neighborhoods

94.7 23.7 71.0 BIOCLIM, logit Upland conifer, northern
hardwoods, lowland conifer

All layers 89.3 21.0 68.3 logit, BIOCLIM Upland conifer, northern
hardwoods, lowland conifer

grassland/shrubland

Red-eyed vireo
Vegetation only 45.5 21.7 23.8/25.5 All 4 Upland conifer
Vegetation and

biomass
67.3 29.4 37.9 All 4 Upland conifer, northern

hardwoods
Vegetation and

neighborhoods
54.5 22.3 32.2 All 4 Upland conifer, northern

hardwoods
All layers 74.5 24.9 46.6 All 4 Upland conifer, northern

hardwoods

Shown in columns 1–6 for each species are 1) model type, 2) the number of bird sample locations that fell into suitable habitat areas on the GARP
maps, 3) the percent of the test site mapped as suitable habitat, 4) the percent improvement of the GARP map over a chance model, 5) the rules
(logit, BIOCLIM, range, and/or atomic) used in themodel, and 6) the Landsat vegetation layer types that the GARPmodel chose as suitable habitat
greater then 50% of the time.
⁎For vegetation only, the second number is the % improvement of the GARP modeled map over the NWDVEG MAP.
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all the layers, offered the most precise regional maps of the
pine warbler distribution in the study site area, and pine
warbler appears to be most dependent on vegetation type and
neighborhoods. Predictions were made more precise within
these areas by adding biomass information.

4.2. Chipping sparrow

For the chipping sparrow model with vegetation only, upland
conifer was selected as the only suitable habitat. This is not in
complete agreement with NORTHWOODS or the literature,
which states that although upland conifer is habitat for the
chipping sparrow, it should prefer weedy fields, edges of
forests, and coniferous areas that have been modified by
humans. However, selection of upland conifer probably oc-
curred in the models because the upland conifer areas in our
site were in fact the most disturbed (some logging and salvage
activities) and fragmented in the otherwise fairly undisturbed
site.

When modeled with vegetation and biomass, chipping
sparrows were more likely found within upland conifer areas
with lower biomass according to our GARP models. Chipping
sparrows thrive in human-modified landscapes and are
actually found in more abundance there than in mature
forests (Middleton, 1987), so the identification of the more
mature pines as inappropriate habitat creates a more precise
geographic distribution. This model, however, still did not
account for the diversity of habitats the chipping sparrow
uses. Not all of the possible habitats listed by NORTHWOODS
for the chipping sparrow were present or surveyed, and the
lack of presence in certain habitats (e.g. agriculture) was
probably due to a lack of survey points in our study, which
focused primarily on forested habitat.

The incorporation of the neighborhood layers in the model
did not as significantly improve the accuracy of predictions for
the chipping sparrow which uses more fragmented and
disturbed habitats. This was seen most strikingly in the
agricultural southeast portion of the site. In the models run
with vegetation only (and vegetation and biomass), individual
cells of presence are scattered throughout this agricultural
area. However, when the models were run with neighborhood
layers, this area of agriculture mostly appeared as absence.
Because of the chipping sparrow's preference for edges, open
woods, and weedy fields, those individual cells of vegetation
that were smoothed over in the majority layer could possibly
have served as habitat for the chipping sparrow. For this
reason, GARP did not predict a more realistic distribution for
the chipping sparrow when modeled with neighborhood
layers.

The chipping sparrow model using all environmental
layers differed from the previousmodels in that more lowland
conifer, northern hardwoods, and grassland/shrubland
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showed up in the higher categories of presence. Although
these percentages were small, this model suggested the pos-
sibility of the chipping sparrow living in these vegetation types
that were also listed in NORTHWOODS. Also, as determined by
the rule-sets, most biomass values above 153 (scale 0–255)
caused an absence prediction, indicating that chipping
sparrows, as should be expected, are selecting against dense,
mature forests. However, since this model included neighbor-
hood layers, individual cells of presence have been eliminated
throughout the image, but particularly among agriculture.
Upland conifer was also distributed more evenly among the
presence categories. For this reason, of the four models
predicted by GARP, the vegetation and biomass model was
probably the most realistic in terms of distribution for the
chipping sparrow in the study site.
5. Red-eyed vireo

The selection of upland conifer as habitat in the vegetation
only model for the red-eyed vireo conflicts, in part, with
NORTHWOODS. We believe GARP predicted upland conifer as
habitat because of deciduous undergrowth in many stands of
mature upland conifer. Twenty-five out of 55 red-eyed vireos
were detected in upland conifer stands that had considerable
deciduous undergrowth. In the several mature upland conifer
stands that did not have any deciduous undergrowth, red-
eyed vireos were not found. Also, NORTHWOODS listed
mature mixed forest as possible red-eyed vireo habitat, and
these areas could have been classed as upland conifer in the
Landsat image. The vegetation onlymodel also conflictedwith
NORTHWOODS by not predicting northern hardwood as red-
eyed vireo habitat. Typically, red-eyed vireos use deciduous
vegetation (Robinson, 1981; Ehrlich et al., 1988; Benyus et al.,
1992), but GARP predicted presence in northern hardwoods in
only 25% of the vegetation only output maps.

In the red-eyed vireo model using vegetation type and
biomass, three-fourths of upland conifer was predicted as
habitat 100% of the time. One atomic rule stated that presence
should occur if the vegetation type was upland conifer. This,
combined with rules stating that biomass must be between 60
and 190 (high to very high relative values for conifer), caused
some of the upland conifer to be selected as habitat. This
appears realistic because for upland conifer to have substantial
deciduous undergrowth to support red-eyed vireos, it is likely
these pine forests are older and taller with higher biomass
values. Another atomic rule stated that presence should also
occur if the vegetation was northern hardwoods. This rule,
combined with the previous rule indicating biomass range for
presence prediction, also explains why more than half of the
northern hardwoods were predicted as habitat 51–75% of the
time, more so than when modeled with just vegetation. Also,
27.4% of aspen/lowland deciduous was chosen as habitat 26–
50%of the time—more thanwas predictedwhenmodeledwith
vegetation only. The aspen/lowland deciduous areas chosen as
habitat have relatively high biomass values for that type,
ranging from approximately 100–180 and are somewhat struc-
turally similar to northern hardwoods.

In the red-eyed vireomodel using vegetation and neighbor-
hoods, upland conifer was selected as habitat among 76% or
more of the output maps. Also, northern hardwoods were
selected, divided among all presence categories. Two atomic
rules stated that in order for presence to be assigned to a cell,
the vegetation had to be upland conifer or northern hard-
woods, with the majority value also upland conifer or
northern hardwoods, respectively. Only large, contiguous
areas of vegetation were selected as habitat. Also, based on
range and BIOCLIM rules,most cells were predicted as absence
if the variety value was greater than five. This could also be
thought of in terms of heterogeneity. The habitat distributions
predicted with the aid of neighborhood layers were large
groups of cells, or the less diverse areas. Since the red-eyed
vireo is a habitat sensitive species and will not inhabit small
patches of area (Robbins et al., 1989), this modeling including
neighborhoods is most likely a more realistic version of
distribution in this area.

In the GARP map for the red-eyed vireo modeled with all
environmental layers, northern hardwoods has the highest
presence predictions, with 34% of northern hardwoods
appearing as habitat in more than half of the separate
distribution maps, more in agreement with NORTHWOODS.
Upland conifer also showed up in the higher categories of
presence (again a contradiction to NORTHWOODS). Atomic
rules stating that vegetation must be either upland conifer or
northern hardwoods affected the distribution prediction. The
range of approximate biomass values that corresponded with
presence in conifer usually fell between 60 and 217 (high to
very high biomass values for mostly planted pines). Presence
northern hardwoods had approximate biomass values that
ranged approximately from 150 to 230 (mature biomass
values). Variety values for a presence prediction typically
ranged between 2 and 4, which could be interpreted as a fairly
non-fragmented area, and majority values had to be either
upland conifer or northern hardwoods. All of these factors
combined allowed for higher prediction of northern hard-
woods as habitat for the red-eyed vireo than in this model
including all layers than in other models. This combination of
vegetation, biomass, and neighborhood values as well as the
significant appearance of northern hardwoods and upland
conifer as substantial habitat area makes this distribution
probably the most realistic of the predicted distributions for
the red-eyed vireo. This also suggests that for some bird
species understory composition and structure is important for
a total habitat description and that our inductive modeling
combined with structural data brought to light habitat
preferences and uses not previously brought out.

5.1. Summary

When modeled with vegetation only, the three bird models
shared very similar output maps, in particular themaps of the
pine warbler and chipping sparrow. The introduction of
biomass resulted in the division of forest types into all the
presence categories, not just the 100% category. Certain areas
and cells were predicted as inappropriate habitat (e.g. high
biomass conifer forest in chipping sparrow models) or as
appropriate habitat (e.g. mature forest in pine warbler
models). Therefore biomass resulted in greater discernment
of appropriate habitat in the cases where this is important to a
particular species. The most notable influence of the
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neighborhood layers used in this study on the birdmodels was
selection of large contiguous areas. This especially aided
models of birds whose habitat requirements are for large
contiguous areas (e.g. red-eyed vireo) and did not aid models
of birds whose habitat requirements included fine spatial
heterogeneity (e.g. chipping sparrow). Overall, evaluation of
GARP rule-sets showed ecologically logical rules for prediction
with respect to vegetation, biomass and neighborhood char-
acteristics of bird habitat.
6. Conclusions

Multi-dimensional forest and landscape structure is known to
be important in habitat selection of major taxonomic groups,
including birds. We investigated the influence of selected
multi-dimensional landscape and forest structure variables
derived from Landsat and radar and used them in a repre-
sentative inductive habitat modeling method. The results of
this study showed that GARP models that included forest and
landscape structure achieved higher accuracies based on
training and testing data, and resulting maps and rule-sets
could be interpreted tomore realistic or precise depictions of a
particular species habitat when compared with the models
that used vegetation type only.

Our studies of just three common forest birds suggest that,
in addition to biomass, it would be useful to test for influence
of other structure variables. For example, the red-eyed vireo
was often found in habitat that prior research had not
indicated to be habitat. Our work showed that this was
because of the presence of understory deciduous layers in
otherwisemature pure red pine overstories. We believe that in
addition to volumetric descriptors such as biomass, it would
be especially useful to develop structural variables from
remote sensing that include within-canopy vertical structure
and overstory and understory configurations. Development of
this type of structural data will advance in parallel with the
wider availability of radar and lidar data.

Previous use of GARP has typically been at regional to
continental scales. Our study is one of the first studies using
GARP inductive modeling software at a landscape level
using fine spatial resolution data and demonstrated its
applicability at that scale. An interesting and useful aspect
of GARP was its incorporation of more than one algorithm
type in its overall methodology, and its output of rule-set
archives generating useful ecological information. With res-
pect to the important consideration of scale, while struc-
tural variables are clearly useful at the landscape level, we
suggest that core variables such as vegetation biomass and
landscape spatial structure may also be meaningful at re-
gional to continental scales.

Building on the important biodiversity efforts of museums
and wildlife and biodiversity organizations, advances in re-
motely sensed data and appropriate modeling methodologies
facilitate realistic habitat and range mapping for biodiversity
informatics. In addition, utility of the methods demonstrated
here extends beyond the development of a habitat or range
model. Once habitat has been identified, models can aid in
prediction of the likely effect of future land-use change on
species habitat and range.
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