JOURNAL OF GEOPHYSICAL RESEARCH, VOL. 107, NO. D21, 4568, doi:10.1029/2001JD000646, 2002

Forest leaf area density profiles from the quantitative fusion of
radar and hyperspectral data

Robert N. Treuhaft

Jet Propulsion Laboratory, California Institute of Technology, Pasadena, California, USA

Gregory P. Asner
Department of Global Ecology, Carnegie Institution, Stanford, California, USA

Beverly E. Law and Steven Van Tuyl
College of Forestry, Oregon State University, Corvalis, Oregon, USA

Received 20 March 2001; revised 8 October 2001; accepted 11 October 2001; published 7 November 2002.

[1] The leaf area density (LAD) of a forest is an important indicator of forest biomass and
is therefore pertinent to monitoring carbon sequestration and change. Quantitative physical
models were used to estimate forest LAD from radar and hyperspectral airborne remote
sensing observations. A parameter-estimation technique based on physical models
minimizes the need for in situ observations and thereby facilitates global remote sensing of
forest structure. Using data from the NASA Airborne Synthetic Aperture Radar (AIRSAR)
and the NASA Airborne Visible and Infrared Imaging Spectrometer (AVIRIS) over three
forest plots in Central Oregon, parameters were estimated separately from the radar and
hyperspectral data and then combined to form LAD. Gaussian relative LAD profiles were
estimated from multialtitude interferometric and polarimetric AIRSAR data. Leaf area
indices (LAI) were estimated from AVIRIS data and used to normalize the relative density
profiles to produce LAD as a function of height. LAD was also determined from field
measurements of geometric tree properties and LAI. LADs in the three forest plots were in
the 0.02—0.18 m” m > range, with LAIs in the range 0.8—2.4 m* m 2. The agreement
between the remotely sensed and field-measured LAD was typically 0.02 m* m > but
occasionally as high as 0.06 m* m™>, which was within a 1—2 standard error range. More
complex models for the remotely sensed relative density, along with more diverse radar
observation strategies, will improve LAD accuracy in the future. LAD estimation will also
improve when radar, hyperspectral, and other relevant remote sensing data sets are
combined in a single parameter-estimation process, as opposed to the separate estimations
performed in this first LAD demonstration.  INDEX TERMS: 1030 Geochemistry: Geochemical
cycles (0330); 0933 Exploration Geophysics: Remote sensing; 0315 Atmospheric Composition and Structure:
Biosphere/atmosphere interactions; KEYWORDS: vegetation profiling, leaf area density, interferometric radar,

hyperspectral imaging spectroscopy
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1. Introduction

[2] One of the principal objectives of forest remote
sensing is determining the component of the global carbon
budget affected by forest biomass sequestration and change
[Waring and Running, 1998]. Vegetation structure, as
revealed by density profiles, is a key indicator of above-
ground biomass and biomass change due to natural or
anthropogenic disturbance [Whitehead, 1978]. This paper
describes the first remotely sensed determination of the
forest-structure variable, leaf area density (LAD). LAD is
the total one-sided leaf surface area per unit volume in the

Copyright 2002 by the American Geophysical Union.
0148-0227/02/2001JD000646$09.00

ACL

canopy [Myneni et al., 1989]. It is averaged over a specified
lateral area and is expressed as a function of height above
the ground. In this paper, LAD will be determined by the
quantitative fusion of radar data from the NASA Airborne
Synthetic Aperture Radar (AIRSAR) [Zebker et al., 1992]
and hyperspectral data from the Airborne Visible and Infra-
red Imaging Spectrometer (AVIRIS) [Green et al., 1998].

1.1. Motive For Measuring Leaf Area Density

[3] Because LAD is the distribution of leaf area as a
function of height, z, it depends on species, developmental
stage, and disturbance, all of which influence levels of
standing biomass. Figure 1 qualitatively illustrates how
two height distributions would result in two very different
LADs and would contribute in very different ways to a
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Figure 1.
distribution due to disturbance and regrowth.
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carbon budget. Figure la schematically shows a stand with
fairly uniform tree heights. Figure 1b shows a stand with
more diverse heights, characterized by sparse, tall, old
growth and dense, young regrowth. The LAD from Figure
la would probably have a maximum density near the center
of the tree canopy, while the LAD from Figure 1b might
have a maximum at lower heights, with a tail extending up
to the higher values of z corresponding to the tallest trees in
the stand. Figure la could represent a mature forest char-
acterized by large biomass and substantial carbon storage.
Figure 1b could represent a forest that has undergone recent
biomass loss through disturbance, with subsequent biomass
accumulation as regrowth and overall LAD increase.

[4] The output of this work, LAD, is thus an important
input to ecosystem process models that simulate the role of
terrestrial vegetation in the global carbon cycle [Sellers,
1997]. Biomass and structural characteristics are also
employed in many models, which investigate the influence
of climate, disturbance, or developmental stage on the
processes controlling net carbon uptake by ecosystems
[e.g. Williams et al., 2001; Law et al., 2000; Law et al.,
1999; Cohen et al., 1996; Landsberg and Waring, 1997].
These models, which are applied at the stand, regional or
global level, require the spatial estimates of canopy struc-
ture developed in this paper.

1.2. Motive for Remote Sensing by Quantitative
Data Fusion

[s] Forests are sufficiently complex targets that a single
remote sensing technique is typically incapable of accu-
rately characterizing the structural attributes needed to
determine biomass and carbon dynamics. For example, a
single-baseline radar interferometric phase observation over
a forest cannot be uniquely related to either the surface
topography or the height of the vegetation but will represent
some combination of the two [Hagberg et al., 1995; Askne
et al., 1997; Wegmuller and Werner, 1997; Rosen et al.,
2000]. With interferometric amplitudes and phases from two
or more baselines [Treuhaft et al., 1996], or with a set of
interferometric observations at different polarizations
[Cloude and Papathanassiou, 1998], vegetation height
and surface topography begin to be separable.
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(a) Schematic picture of a stand with fairly uniform tree height. (b) More diverse height

[6] Analogous to the microwave domain, the broadband
normalized difference vegetation index (NDVI) [Tucker and
Sellers, 1986] in optical remote sensing, with its wide ~0.3
pm bandwidths, is not capable of accurately estimating leaf
area indices (LAI, the integral of LAD(z) up to the canopy
height) above values of 4—5 [Diner et al., 1999]. The addition
of many more narrow spectral channels allows determination
of much higher LAI values [Gao and Goetz, 1990, 1995;
Ustin et al., 1998]. Additionally, specialized hyperspectral
observations in the shortwave-infrared (2.0-2.4 um) allow
for the determination of subpixel canopy cover fraction
independent of canopy LAI [Asner and Lobell, 2000; Lobell
etal.,2001]. Canopy cover fraction is necessary for modeling
shadowing effects during the process of LAI estimation.

[7] In general, a set of data types, which exhibit diverse
sensitivities to forest parameters of interest, yields more
accurate parameter estimates than those derived from any
single data type [Kynazikhin et al., 1998]. The diversity of
sensitivities of radar and hyperspectral data to LAD renders
their combination suitable to LAD determination, although
either technique alone would be insufficient.

[8] One advantage of using a physical-model approach to
remote sensing is that minimal in situ measurements are
needed. The remote sensing is truly “remote” and has much
greater potential for global monitoring than nonphysical
approaches that require in situ training. Because the model-
driven estimation process also yields parameter-estimate
errors as a function of the diversity of observations and
their errors, systematic paths to accuracy improvement can
be explored; they can be assessed with a priori covariance
analyses and can then be tested with data. The disadvantage
of relying on physical models is that model inaccuracy or
oversimplification will corrupt results such as LAD. The
best way to test the accuracy and completeness of models is
to apply them to real remote sensing data and compare the
parameters estimated to field-measured results, as in this
paper.

[o] Section 2 of this paper describes the AIRSAR (radar),
AVIRIS (hyperspectral), and field data acquisitions. The
parameter-estimation approach to quantitative fusion is
detailed in section 3. The physical models required for
parameter estimation and their specified dependence of
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the radar and hyperspectral data on model parameters are
described in sections 4 and 5, respectively. Section 6
describes the estimation of LAD from field data from three
ponderosa pine (Pinus ponderosa Var. Laws) stands in
central Oregon. In section 7, the remotely sensed LADs
derived from the methods in sections 3, 4, and 5 are
compared with the field measurements of section 6. Section
8 contains conclusions and future plans.

2. Radar, Hyperspectral, and Field Data
Acquisitions

[10] AIRSAR was flown on 25 April 1998 in interfero-
metric mode, with vertical polarization, over Central Oregon
at three different altitudes, 8, 4, and 2 km. As will be shown
in section 4, multibaseline radar interferometry, which can be
acquired by flying a single baseline at multiple altitudes,
enables estimates of the LAD profile as a function of height
above the ground. Radar interferometric data were collected
at wavelengths of 5.7 cm (C band) with a physical baseline
of2.46 m and at 24.2 cm (L band) with a physical baseline of
1.97 m. Only the C band data had a sufficiently large
baseline/(wavelength x altitude) ratio to be useful in the
parameter-estimation process in section 3; the L band data
were analyzed but not reported here because they added little
to the LAD determination. Polarimetric data were also
acquired at 8 km, at C, L, and P band (68.3 c¢cm), but only
C band data were used. The AIRSAR DC8 flight path was
shifted for each altitude to maintain the same target at a 35°
look angle. The average longitude and latitude of the over-
flight was —121.70° and 44.44°, and the flight spanned an
area of ~20 x 20 km. This area contained twenty stands on
which assorted field measurements were made. This study
focuses on three of those twenty, as noted below.

[11] AVIRIS collects upwelling radiance data in 224
optical channels with a nominal resolution of 10 nm cover-
ing a spectral range of 380—2500 nm [Green et al., 1998].
The AVIRIS was flown over the study region on 10 June
1999 on the NASA ER-2 aircraft at 20 km altitude, creating
~17 x 17 m pixels in the resulting image data. Radiance
data were converted to apparent surface reflectance using
the ATREM atmospheric code [Gao et al., 1993], which
employs the 6S scattering code for atmospheric gases
[Vermote et al., 1997]. Further corrections for surface
reflectance were made using a large (dark) lake and (bright)
cumulous clouds [Lobell et al., 2001].

[12] Field observations were performed on 20 stands
including the two Metolius flux sites in Central Oregon in
summer 1999. The flux sites are part of the eddy flux
networks, AmeriFlux and Fluxnet, and they are NASA EOS
Land Validation Core sites (http://modis-land.gsfc.nasa.gov/
val/). Forest structure was measured on each of the twenty
100 x 100 m plots. Total tree height, height at the widest
point of the crown, crown radius, and height at the base of
the crown were measured using a laser clinometer (Impulse
200, Laser Technology, Englewood, Colorado) and stem
diameter using a diameter tape. Measurements were made
on all trees greater than 5 cm DBH (diameter at breast
height, 1.4 m), and the remaining trees were tallied. GPS
coordinates were obtained for each of the stands, as well as
for prominent features such as major road intersections, to
facilitate radar geolocation.
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[13] LAI was also measured on each of the forest stands
on a 10 m grid using an optical leaf area meter (LAI-2000,
LICOR, Lincoln, Nebraska), resulting in 121 measurement
points per plot. Measurements were made under diffuse sky
conditions, primarily in the evening. A mean value for LAI
was calculated for each plot and then corrected for canopy
clumping using the methods described by Chen et al. [1997]
and Law et al. [2001a]. Three stands were identified for
field LAD estimation, as described in section 6.

3. Parameter-Estimation Approach to
Quantitative Fusion

[14] This section formulates the parameter estimation
approach to the radar and hyperspectral data for estimating
LAD. It will describe the inputs to and outputs from the
physical model in Figure 2, which schematically shows the
process of determining LAD(z) from radar and hyperspectral
observations. The physics relating the outputs to the inputs
will be described in sections 4 and 5. The “other params” in
Figure 2 represent other parameters required by the physical
model that will also be estimated. They include, for example,
surface topography [ Treuhafi et al., 1996] or subpixel canopy
cover fraction [Lobell et al., 2001]. These other parameters
will be specifically used in future analyses to understand
stand succession, but this paper will focus on LAD.

[15] Figure 2 represents what is referred to in this paper

s “quantitative fusion.” The fusion of radar and hyper-
spectral data is quantitative in that physical mechanisms
based on electromagnetic propagation relate LAD to each
data type via the physical model. The physical-model
approach in this paper is based on discrete scatterers
(microwave) [Treuhaft et al., 1996] and radiative transport
(hyperspectral-optical) [Asner, 1998; Asner, 2000]. Figure 2
is idealized in that it shows microwave and hyperspectral
data as entering the analysis together, being processed by a
single model as in equation (2), and the model-data differ-
ence being minimized in a single parameter estimation
approach. In order to optimize quantitative fusion, the data
should be processed together as shown in Figure 2. How-
ever, in this first demonstration of quantitative fusion, an
operationally easier approach is taken in which the two data
types are processed separately, as explained below.

[16] The parameter-estimation process adopted for the
AIRSAR and AVIRIS data involves expressing LAD(z) in
terms of a small set of parameters and estimating those
parameters from the radar and hyperspectral data. To that
end, LAD(z) is represented in terms of a normalized
(vertical integral = 1) relative-density function Rel(z; P)
and the LAD integrated in the vertical direction:

LAD(z) = { / dz LAD(z’)‘ Rel(z;P) = LAIREL(zP) (1)
0

The relative-density function is similar to the profile that
can be obtained from lidar [Lefsky et al., 1999]. In equation
(1), P is a set of parameters on which the relative density
Rel(z; P) depends, for example, a slope and an intercept for a
linear density as a function of height. In this paper, P will be
the center and standard deviation of a Gaussian density
function. In equation (2), the model M is represented by its
operation on the input LAD parameters in (1), Rel(z; P) and
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Figure 2. Schematic representation of LAD parameter estimation using interferometric and polarimetric

radar and hyperspectral optical data.

LALI, and other parameters required to produce the radar and
hyperspectral observations on the left side:

Interrefometric Phase;
Interferometric Coherence;

Interferometric Phaseq

Interferometric Coherencep LAD(z)
Polarimetric Power Ratio B Other Parameters
Hyperspectral Reflectance;
Hyperspectral Reflectance,
Rel(z, P)
=M LAI (2)

Other Parameters

The interferometric coherence is the amplitude of the cross
correlation (equation (4)), normalized by the square root of
the power at each end of the baseline and varies between 0
and 1. The indices on the coherences and phases refer to Q
different baselines or altitudes in this paper but could also
indicate different observing wavelengths, different polari-
metric combinations at the end of a single baseline, or any

combination of the above. The polarimetric power ratio is
the ratio of received power in horizontal polarization to that
in vertical polarization. The hyperspectral entries represent
R high-resolution channels in the 0.4—2.4 um range. The
model M in equation (2) is the microwave and optical
physical models, represented as a single physical model in
Figure 2. .

[17] The Rel(z; P) and LAI parameters on the right side of
equation (2) were chosen to express LAD(z) because they
are easily related to the radar and hyperspectral observations,
respectively, with simple models. While changes in either of
these top two entries affect both radar and hyperspectral data,
in this first attempt at estimating LAD, Rel(z;P) was
assumed to affect only radar data and LAI was considered
to affect only hyperspectral data. The version of equation (2)
actually used to derive LAD from AIRSAR and AVIRIS data
associates Rel(z;P) and LAI with radar and hyperspectral
data, respectively, as follows:

Interferometric Phase;

Interferometric Coherence;
: .y ( Rel(z, P) )
3 = Myadar

Interferometric Phaseq Other Radar Parameters

Interferometric Coherenceg

Polarimetric Power Ratio

3)
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Figure 3.

(a) Schematic vegetation contributions to the interferometric cross correlation from a

hypothetical three-level vegetation density distribution peaked in the middle, with a (b) maximum density
at the lowest level. The length of each line corresponds to the cross-correlation amplitude, and the angle
that each line makes with the x axis is the cross-correlation phase.

Hyperspectral Reflectance,

Hyperspectral Reflectancey

Yy ( LAI )
— P\ Other Hyperspectral Parameters

The separate estimation of parameters from radar and
hyperspectral data in equation (3) loses some of the
benefits of quantitative fusion because the dependence of
for example hyperspectral observations on Rel(z; P)
ignored in the radar-only determination of Rel(z; P)
Modeling this dependence and performing a combined
estimation as in equation (2) might improve the determi-
nation of the LAI parameter and thus of LAD in the
future.

4. Leaf Area Density Parameters From the
Radar Physical Model

[18] This section will describe the radar model in
equation (3) that expresses the radar interferometric and
polarimetric observations as a function of the radar
LAD parameter (Rel(z; P)) and other radar parameters.
The complete set of parameters is determined by the
physical model, which involves both a distorted-Born,
randomly oriented vegetation volume and a ground
component [Treuhaft and Siqueira, 2000]. The coher-
ence and phase of the complex interferometric cross
correlation is the fundamental interferometric observa-
tion. In this work, the polarimetric power ratio (power

at horizontal polarization/power at vertical polarization)
is the only polarimetric quantity considered, but the
approach to including all possible polarimetric and
polarimetric interferometric quantities in terms of phys-
ical model parameters is given by Treuhaft and Siqueira
[2000].

[19] Representing the coherence (the amplitude of the
cross correlation normalized by the total power) by the
length of lines, and representing the phase by the angle
the line from each vegetation component makes with the x
axis, Figure 3 schematically shows how vegetation com-
ponents at each level in a hypothetical three-layer canopy
add to form the normalized cross correlation. In Figure 3a,
a profile is represented in which the vegetation contributes
the strongest signal in the middle of the canopy, as in
Figure la. Figure 3b represents a distribution like that of
Figure 1b in which the lower part of the canopy gives the
strongest radar returns and the mid and upper parts are
weaker. Note that both the coherence and the phase of the
total cross correlation change if the structure, which is
related to Rel(z P) changes. Because the phase angle of
each line is also proportional to the baseline length, a
family of total cross correlations results from a set of
baselines used to observe the structure of a given forest
stand.

[20] There is both a vegetation volume and ground
component to the quantitative description of the cross
correlation in equation (4). The vegetation volume
component, which is the first term in equation (4),
derives from Treuhaft et al. [1996, equation C7]. The
ground component, which is the second term in equa-
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tion (4), derives from Treuhaft and Siqueira [2000,
equation 24]:

Cross Correlation oce’®) / dz dGh N (2)( f;,2 (2))
0

2 .
[ o) | w4y (v e
Seo
0

X exp
co

(4)
The integral over z continuously sums the cross correlation
weighted by the vegetation scattering strength at each
altitude, as represented discretely in Figure 3. The strength
is the product of the number of scatterers per unit volume,
N(z), and the average squared backscattering amplitude, or
strength, of a single scatterer, (f,® (z)). This strength is
weighted at each altitude by attenuation in the integral over
7', which contains the profile of the microwave extinction
coefficient, 0,(z). In equation (4), 0, is the angle between the
vertical pointing down, along the —z direction from the
radar, and the patch of forest being observed, and «.(B/
(\H)) is the derivative of interferometric phase with respect
to altitude above the surface. It is proportional to B, the
baseline length, over \H, the radar wavelength times the
aircraft altitude. The dependence of the cross correlation on
B/H prompts varying H, the AIRSAR altitude, to achieve an
effective variation in baseline length. The term ¢(zo) is the
interferometric phase at the ground altitude, z,, and is close
to the phase of the lowest vegetation component in Figure 3.
Since the volume is assumed randomly oriented, the
scattering-amplitude terms are not polarimetrically sensitive
[Treuhaft and Cloude, 1999]. Although leaves and other
canopy material are characterized by apparent systematic
orientations, there is no evidence that vegetation volume
orientation has any detectable effect on microwave scatter-
ing in forests as observed with interferometry.

[21] The second term in equation (4) is the ground
contribution, contributing a phase of ¢(zo) with a strength
4As(y, €), where V refers to vertical polarization, y is a
term having to do with ground roughness, and € is the
ground dielectric constant [7reuhaft and Siqueira, 2000].
The horizontally oriented ground carries the only polari-
metric signature. The parametric dependence of the final
radar observation in equation (3), the polarimetric power
ratio, is obtained from equation (4) by letting the baseline
go to zero, evaluating at both horizontal and vertical polar-
izations, and taking the ratio.

[22] The goal of the model in equation (4) is to relate the
cross correlation to the vegetation structure parameter to be
estimated, Rel(z;P), as well as whatever “other” parameters
are required, as indicated in equation (3). This is accom-
plished by the following model assumptions relating
Rel(z;P) to the geometric and electromagnetic terms in
equation (4):

N(2)( /7 (z)) o Rel(z; P)
0x(z) = oy Rel(z; P)

(5)

In order to see why the assumption in the first line of (5) is
plausible, consider that
= Numb L
LAD(2) o Rel(z; P) ~ Number of Leaves
Volume
X Average Area per Leaf (z) (6)
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Given (6), the assumption in the first line of (5) effectively
says that the number of microwave scatterers per unit
volume, N(z), is proportional to the number of leaves
(needles) per unit volume, which is a reasonable assump-
tion. Even if the fundamental scatterers, for example at
lower radar frequencies, are branches, the number of those
scatterers per unit volume is probably still proportional to
the number of leaves per unit volume as a function of
altitude, for many forests. It is also plausible that the
average area per leaf is related to the backscattering
strength, (f,%(z)). Alternatively, it is a plausible modeling
assumption that the average backscattering strength of a
single scatterer has a much weaker z-dependence than the
scatterer number density, in which case the first line of (5)
still holds. The extinction coefficient in the second line of
(5) is also proportional to N(z) and to scattering charac-
teristics [Treuhaft et al., 1996]. The second line of (5) is
plausible by similar arguments.

[23] Using (5) in (4), and assuming that the relative leaf
area density is Gaussian yields a model, M,,4a, relating the
radar observations to Rel(z;zg,05) and other parameters:

Cross Correlation o €% / dz &G Rel(z; 26, 0.)
0

z

2 . .
cos 90./ dZ' oy Rel(Z;zg,06) | +4A¢(y, 8)eto(zo) 7)
0

X exp

where zg is the center of the Gaussian density distribution
and og is the standard deviation. The Gaussian profile
parameterization is motivated by the field observations of
LAD, but estimation of more complex profiles, for
example a double-Gaussian, should be tried with remote
sensing data sets that are more extensive than those
analyzed here.

[24] The dependence of the total cross correlation on
Rel(z;zg,0G) and other parameters results from (7), prompt-
ing the expression for microwave data below:

. e}
Interferometric Phase; m x0

. Z,
Interferometric Coherence; xm G

. oG
Interferometric Phase; xm ping = M, udar
Interferometric Coherence; km ping \::’

Horizontal /Vertical Power Ratio 20

(8)

where the set of observations in the curly brackets are
specified by the subscripts, i, which indicate the radar
altitudes 8, 4, and 2 km. The subscript “ping” indicates
ping-pong interferometric mode, in which signals are
alternately transmitted from each end of the baseline.
This mode effectively doubles the baseline length
without changing the altitude [7reuhaft and Siqueira,
2000]. The HHHH/VVVYV entry is the ratio in the power
transmitted and received at horizontal polarization to that
at vertical polarization. This is the only polarimetric
observation used, as introducing more polarimetric
observations requires the introduction of more parameters
describing the scatterers and does not improve the



TREUHAFT ET AL.: FOREST PROFILES FROM RADAR AND HYPERSPECTRAL

0.60 (-
0.50 |
0.40 |
0.30%—

0.20 |

Pixel Reflectance Factor

0.10 |

Y1) T S T I DU IR A
500 750 1000 1250 1500 1750 2000 2250 2500
Wavelength (nm)

Figure 4. Canopy reflectance as a function of wavelength
for a range of LAI values with no non-photosynthetic tissue
exposure. A typical AVIRIS spectrum from the Oregon
imagery is also shown in the bold line.

structure determination [7Treuhaft and Siqueira, 2000]. This
polarimetric ratio helped to control the parameter estimates,
but the multialtitude interferometric observations were much
more influential in determining the profile parameters. Two
phase offset parameters not shown in (8) were also estimated
in order to remove the effects of systematic errors found in
AIRSAR interferometric phases.

5. Leaf Area Density Parameters From the
Hyperspectral Physical Model

[25] This section will describe the hyperspectral model
in (3) that relates LAD parameters (LAI and other vege-
tation parameters) to the hyperspectral reflectances. These
parameters are derived from the numerical inversion of a
physical model that relates the scattering and absorption
properties of vegetation elements in 3-dimensional space
to the observed pixel spectroscopic reflectance from AVI-
RIS [Asner, 1998, 2000; Asner et al., 1998b]. The total
one-sided LAI is the vertically integrated LAD, as indi-
cated in (1).

[26] Figure 4 shows the qualitative dependence of the
hyperspectral reflectance spectrum on LAI. The AVIRIS
spectrum acquired for plot 1 of the Oregon forest sites is
also shown with the heavy line, indicating the approx-
imate LAI by simple inspection of the visible/near-IR
spectral region between 0.68 and 1.2 pm. The “red-edge”
(0.69-0.71 pm) is particularly sensitive to increasing LAI
[Hall et al., 1990], as are the local canopy water
absorption features near 0.9 and 1.2 pm [Gao and Goetz,
1995; Ustin et al., 1998]. However, pronounced non-
photosynthetic tissue absorption features in the short-
wave-infrared (2.0-2.4 pm) region of the AVIRIS spec-
trum indicate the presence of exposed ground litter, which
is due to partial canopy cover within the pixel [Asner,
1998]. Exposed ground cover is also indicated by the lack
of a strong “green peak” near 0.55 pm in the AVIRIS
spectrum.

[27] The spectral dependence of the reflectance signatures
in Figure 4 is a function of the illumination and viewing
geometry, canopy structure, and tissue optical properties.
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These parameters come together in the radiative transfer
equation governing the pixel-scale reflectance, at wave-
length X\, as observed by the sensor:

(>\7 Qla Q) = [VC X pcanopy(>\7 Ql? Q)] + [(1 - VC) X Pground
-(\Q,Q)] or

Ppud

ppixel(>\7 9/7 Q) = [VC X (punx(‘ar (>\7 Q’? Q) + psingxc (>\7 Q,> Q)
+ pmult.\‘c(>\7 Q/))} + [(1 - VC) X pgmund(>\7 Q/> Q)}
©)

The pixel reflectance arises from the area covered by
vegetation within the pixel, indicated by the fractional
vegetation cover, VC, and from exposed ground, indicated
by the 1-VC term. As shown in the second line of (9),
within the vegetation, there are three major components of
the calculated reflectance (pcanopy(X,Q',Q)): (1) radiation
that is not scattered by vegetative tissues (puscal(\$2,€2)),
(2) singly scattered radiation (psngsc(N$2,02)), and (3)
radiation that undergoes multiple scattering (ppuusc(N\$2)).
Here, Q' represents a unit vector in the direction of radiation
propagating from the sun with zenith '= cos®’ and azimuth
@', and ) represents a unit vector pointing from the pixel to
the sensor with geometric position p= cos) and azimuth ¢.
[28] Equation (9) can be rewritten as:0

G(Y)

ppbce[ (>\a Q/7 Q) = [VC (pgroundo\v le Q)exp[fB <W

+ ) 4l

TN [ [ (GE) | G(9)
+L4 p{ B< + >L}dL

I
+ pmultsc(>\’ Q,)) :|

+ [(1 = VO)pgruna 0. 2, )] (10)

A full explanation of each component of (10) is given by
Myneni et al. [1989], laquinta and Pinty [1994], Asner and
Wessman [1997], and Asner [2000]. Briefly described here,
the unscattered radiation is a function of the ground
reflectance (pgrouna(™, 0, Q)), total canopy LAI a canopy
clumping parameter (3), the “G-function”, and solar-
viewing geometry. The G-function is given by Ross,
[1981] as a function of the angular distribution of leaf
normals. The radiation scattered once by canopy elements is
a function of the solar-viewing geometry, 3, G-function,
LAL and the gamma function, T(\,£Y,Q). The gamma
function is given by:

L
rmmm:ﬂﬁmmmmm@mymmL(m

2

where g;(€);) is the leaf normal distribution function as a
function of the leaf normal unit vector €2; [Ross 1981], and
SO\ €, Q:9,) is the bi-lambertian function describing leaf
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reflectance (pgoliage(N)) and transmittance (Teotiage(N)) [Asner
and Wessman, 1997]:

(- Q)R- Q) <0
(u - -92) <0
(12)

f(>\7 Q,; Q QL) = (pfoliage(x)‘QL ! Ql)/ﬂ7
(Tfoliage(x”QL . Q|)/ﬁ7

The multiple scattering term in (10) is a function of leaf
reflectance and transmittance, the G-function, and solar
geometry as specified by laquinta and Pinty [1994]; it is
independent of viewing geometry.

[29] Based on equations (9)—(12), the pixel-scale spectro-
scopic reflectance signature of a forest canopy is determined
by a set of parameters representing foliage reflectance and
transmittance, ground reflectance and canopy volume and
architecture:

LAI
p_/bliage (>\) ) Tﬁl/i(//lge (>\)
pground(>\7 Q Q)
G — Function

8
vc

(Hyperspectral Reflectancey) = Mjyper

(13)

Variation in the magnitude and shape of the hyperspectral
reflectance continuum from 0.4-2.5 pm is dependent upon
the spatial variation of the parameters above [Jacquemoud,
1993; Asner, 1998]. However, in nature, the range of
variability may be large for some parameters while it is
narrow for others. For example, tissue optical properties
(pfoliage (>\), Tfoliage (>\))’ ground reflectance (pground (>\)), and
leaf angle distribution (G-function) vary within a relatively
narrow range of values in most ecosystems [Asner et al.,
1998c¢], especially in conifer forests [e.g., Mesarch et al.,
1999]. In many coniferous forests, the parameters that vary
at the highest spatial frequency tend to be LAI and VC
[Cohen et al., 1996]. Thus, solving (13) can be achieved by
allowing the parameters that are not of interest to be
constrained to ranges of variability as prescribed from large
field-based data bases, while parameters of interest (LAI,
VC) are estimated.

[30] It should be noted that the hyperspectral reflectance
actually depends on LAD(z), and therefore on Rel(z;P),
which formally should be included in the parameter vector
in (13). The dependence on the relative density has been
effectively ignored in (10) by taking Rel(z;P) to be inde-
pendent of z, which leads to the separate parameter estima-
tions in (3). Because the radar dependence on Rel(z;P) is
much stronger than the hyperspectral dependence, this
probably introduces errors that are negligible compared to
the dominant errors mentioned in section VII on results.

[31] The solution to (13) is carried out in two steps. First,
spectral derivatives in the shortwave-infrared (SWIR, 2.0—
2.4 pm) region are used to estimate VC. Spectral derivatives
in this region have been shown to provide the most robust
information on the (horizontal or lateral) extent of dominant
land-cover such as green canopy and soil/dry needles as
apparent to the sensor [Asner and Lobell, 2000]. When the
effect of spectral albedo is removed via the use of derivative
spectra, (10) converges on a linear solution involving
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Table 1. Basic Characteristics of Each Coniferous Forest Stand
for Which LAD Was Estimated

Plot
Number Longitude Latitude Description
1 —121°37'29.2"  44°29'55.6” multilayer, tall old-growth and
short, young trees
2 —121°37'21.8” 44°30'1.8”  open and uniform, single layer
tall canopy
3 —121°37"21.9” 44°29'54.2” dense stand, with a single layer

of short trees, and a few large
old trees

‘vati dPeanopy (M) Agrouna NV Q)
derivative spectra, {VC pp’TJ*‘{(l - VC) ground \ N7 20 fzx J,

where peanopy 18 as in (10). We have already demonstrated
that the derivative-SWIR spectral unmixing provides can-
opy cover information independent of variation in LAI in
these conifer forests [Lobell et al., 2001].

[32] The second step requires a numerical inversion of a
photon transport model (equations 9—12) to estimate LAI
[Asner et al., 1998b]. The model inversion is executed
within a Monte Carlo scheme that allows pgoliage(N),
Trotiage (N)> (Pground (M), the G-function, and 3 to be varied
along with LAIL. The VC parameter is fixed to the value
derived from the first stage SWIR analysis. The estimated
LAI value is that which provides the best fit between
measured and modeled AVIRIS spectra [Asner et al.,
1998a, 1998c; Asner, 2000]. The final LAI estimates
include standard error ranges, which arise from the use of
Monte Carlo methods for the narrowly defined free-floating
parameters. The LAI estimate is achieved using only the
visible and near-IR wavelengths from 0.55—1.25 pm; this
region is extremely sensitive to variation in LAI [Hall et al.,
1990; Gao and Goetz, 1995; Ustin et al., 1998].

6. Leaf Area Density From Field Measurements

[33] This section describes leaf area density estimations
from field measurements of three stands located at the
Metolius flux site in Central Oregon. Three stands were
selected with different canopy structures and stand densities.
LADs from these stands will be compared to remotely sensed
parameter estimates in the next section. The stands are
described in Table 1. Due to high stand density in the short
canopy plot (plot 3) trees were measured on five 10 m radius
subplots as opposed to measuring all of the trees on the plot.
In mixed canopy plots (1 and 3), we identified two size
classes: trees less than 30 cm DBH and trees greater than 30
cm DBH. These three stands have structures similar to those
in logged and undisturbed forests [Law et al., 2001a, 2001b].

[34] In CANLAD, a model developed to produce LAD at
the stand level, the field-measured LAI was apportioned as a
function of height above the ground by calculating the
fractional canopy volume containing most of the leaf area,
as a function of height. Calculations of canopy volume were
made using two functions, one for the volume from the base
of the crown to the widest point of the crown and one for the
volume from the widest point of the crown to the top of the
crown, represented in the two terms of (14). The crown
radius at any altitude z in the tree was assumed to vary as
the fourth root of the fractional distance to the bottom or top
of the tree, for each volume respectively. Field work
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Table 2. The LAD Parameters Estimated From the Radar and
Hyperspectral Data for Three Coniferous Forest Plots, With
Standard Errors in Parentheses

Plot Number Radar Hyperspectral
Gaussian Center  Gaussian Standard  Leaf Area Index
zZg, m Deviation, o5, m (LAID), m*/m?
1 0.0 (1.1) 16.7 (1.2) 1.8 (0.4)
2 25.2 (1.6) 53 (2.1) 1.1 (0.3)
3 12.8 (7.2) 13.2 (3.4) 2.4 (0.4)

suggested that the fourth root best approximates the profile
of a typical ponderosa pine. The sum of these two volumes
yields the volume of the entire tree canopy as a function of
field-measured quantities:

Zy Zr
zZ—2zp zZ—z
V(x,zp, 2w, 2t) = *rr/x2 —dz + ﬂ/xz dz (14)
Zw — Zp Zt — Zw
zp Zy

where V = canopy volume, z, = tree height, z,, = height at
widest point of crown, z, = height at base of crown, z =
integration variable, and x = crown radius at widest point of
crown.

[35] Because leaf area is concentrated distal to the main
stem, an outer shell of leaf area was produced by using the
same formula, but reducing canopy dimensions by 1-2 m
[Cescatti, 1997a]. Thus, the volume between the stem and
the terminal branches was subtracted, leaving an outer shell
that typically contains most of the leaf area. Field measure-
ments were taken in order to determine how ‘deep’ this
outer shell should be.

[36] This tree canopy shell was then divided into 1m
layers horizontally (e.g., 0—1 m, 1-2 m, etc.), and a volume
was calculated for each bin and averaged to obtain mean
stand volume for each bin. Stand LAI was then distributed
in the bins according to the percentage of canopy volume
within each bin. For stand 1 (mixed canopy structure), we
used a mean bin volume weighted by total stand canopy
volume for each of the two size classes. The final product of
the model is an LAD value for each 1m bin, where each bin
represents a mean value for the entire plot.

7. LAD Results of the Central-Oregon
Demonstration

[37] Remote sensing determinations of LAD are the
central result of this paper. Combining Gaussian center, zg,

Table 3. Field Measurements Used in Field LAD Estimation, With
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and the standard deviation, o, estimated from the AIRSAR
radar data, with the LAI estimated from the AVIRIS hyper-
spectral data yields LAD(z). Table 2 shows the radar and
hyperspectral parameter estimates and their standard errors
in parentheses. The standard errors are calculated by putting
a distribution about the actual data into the mechanism of
Figure 2, in place of the data box. Simulated observations
and ranges of constrained parameters (in the hyperspectral
estimation) are fed to the process in Figure 2 in a Monte
Carlo analysis. The statistics of the optimal parameters
estimated from the Monte Carlo trials determine the param-
eter estimate standard errors.

[38] Field estimates of LAD were derived as described in
the previous section. They were based on the field measure-
ments shown below in Table 3 along with the field-meas-
ured LAI values. The number of trees per hectare is also
shown for reference.

[39] Figures 5a, 5b and 5c, show field-measured LAD for
plots 1, 2, and 3, along with LAD estimated from the radar
and hyperspectral data, from the parameters in Table 2.
Also shown are error bars on two points of the field-
measurement curve. These standard errors were derived
by comparing stand 1 results to results from a three-dimen-
sional radiative transfer model driven by the field measure-
ments [Law et al., 2001a, Cescatti, 1997a; Cescatti, 1997b].
The error bar is higher at lower altitudes because the
CANLAD model does not appear to adequately produce a
crown-shape and leaf area distribution for shorter trees,
partly because of the rather simple representation of the
crown envelope. The ‘R+H 1-sigma’ dotted-line curve is
formed by using both radar and hyperspectral parameters
that are shifted by one standard error away from the best
estimate, which is indicated by the solid ‘Radar+ Hyper-
spectral’ curve.

[40] The agreement between the field and remote sensing
LAD determinations is often within 1-2 standard errors of
the difference standard error (the quadrature sum of the
individual standard errors). That is, either the solid remote
sensing curves or the 1-sigma curves are within 1-2 stand-
ard deviations of the field measurements for much of the
range of height above ground. The agreement between the
remote sensing and field LAD is reasonable for stands 1 and
2. The largest disagreement is the failure of the radar plus
hyperspectral curve to track the large peak for low heights
in stand 3, Figure Sc. Part of the reason for this disagree-
ment in stand 3 is that the Gaussian model used in the radar
analysis, motivated by the need to keep the number of

Standard Errors in Parentheses®

Number Trees
and aboveground
Biomass (Tons)

Dbh, cm X, m Zp, M Z,,, M Z, m per Hectare
Plot 1; 13.13 (0.23) 1.40 (0.02) 4.46 (0.08) 5.94 (0.10) 9.52 (0.16) 753
LAI =191 68.47 (3.25) 441 (0.22) 9.51 (0.47) 19.20 (0.98) 33.85(1.32) 178
(0.03)
Plot 2; 54.95 (2.51) 2.97 (0.06) 12.09 (0.48) 19.24 (0.61) 33.48 (1.26) 84
LAI = 0.89 227
(0.01)
Plot 3; 12.47 (0.40) 1.34 (0.01) 6.27 (0.15) 6.91 (0.16) 10.63 (0.30) 1286
LAI =245 55.24 (4.25) 2.19 (0.50) 12.42 (0.97) 17.95 (0.85) 30.95 (1.56) 277
(0.04)

*For the geometric measurements in mixed-canopy plots, the top entry is for shorter trees (<15 m) and the lower entry is for taller trees.



ACL 7-10 TREUHAFT ET AL.: FOREST PROFILES FROM RADAR AND HYPERSPECTRAL
012 rrrr T rrrrrrorrT rrrrrr et
Field Measurements a) 4
0.10 —
N'\E 0.08 T
£ _
%’ .‘"-.,.R+H 1-sigma ]
B 006f 5
]
3 L _
< L m
= 004 _
Q
2 L _
0.02 B Radar+Hyperspectral |
000 e ]
0 10 20 30 40 50
Height Above Ground (m)
Figure 5a. Plot 1 LAD from field measurements and radar + hyperspectral quantitative fusion LAD

estimate. The dotted line is the LAD generated with parameters 1-sigma away from the best estimates.

estimated parameters small, is not the best description of the
LAD for stands 1 or 3. Because forcing the remote-sensing
profile to look Gaussian is akin to measuring the best
Gaussian which fits the field data, that best-fit Gaussian is
shown with the remote sensing profiles in Figure 6. The
performance of the remote sensing data at the large peak is
improved, with slightly worse agreement at higher heights.
Figure 6 suggests that the remote sensing parameter esti-
mation process might be able to find the best Gaussian fit to
LAD, but that even the best Gaussian does not fit the field
LAD that well.

[41] Figures 5 and 6 suggest that if the radar profile
model could be made more complex, for example a double

Gaussian or Gaussian with a pedestal, the remote-sensing
LAD determination could be more accurate. More diverse
observations would be required than were available in this
data set, if more complex models with more parameters
were used. As already noted for this radar data set, redun-
dancy was built in. Estimating phase-offset parameters due
to systematic AIRSAR interferometric effects, as indicated
in (8), also limited the number of new structure parameters
that could be introduced into this analysis. In the future,
altitudes that are not multiples of each other will be flown,
and phase calibration will be done at different AIRSAR
altitudes. There may be other radar model inadequacies, for
example flaws in the assumptions in (5), which can be
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Figure 5b.

Plot 2 LAD from field measurements and radar + hyperspectral quantitative fusion.
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explored with more diverse data sets. The LAD from remote
sensing and the field estimates should ultimately agree
within one standard error on average for all heights.

[42] The LAI values derived from the AVIRIS observa-
tions of the three plots were well within the error range that
can be reported from field measurements [Law et al.,
2001b]. As shown in a few previous studies [e.g., Asner
et al., 1998b; Ustin et al., 1998], spectroscopic radiance
(reflectance) measurements provide a means to estimate
LAI with relatively high accuracy, especially when LAI
ranges from zero to five. However, the various methods for
retrieving LAI are prone to errors resulting primarily from
the partial cover of the canopy within image pixels. The

greatest uncertainty in this approach is in several assump-
tions about the clustering of needles within the canopies
(and the physical model) [Myneni et al., 1989; Chen, 1996].
We have found that the LAI values retrieved from the
inverse modeling method are highly sensitive to assump-
tions about needle clumping, as has been found in previous
studies [Law et al., 2001a, 2001b]. Our reported LAI
estimates for the three study plots have uncertainty ranges
of 0.3—0.4 LAI units due primarily to the uncertainty in
needle clumping (data not shown).

[43] The CANLAD model used to estimate LAD from
field data could be improved to include a more refined
crown envelope with shape coefficients and three-dimen-
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Figure 6. The best Gaussian fit to field estimates of LAD for plot 3, and radar + hyperspectral

quantitative fusion estimate.
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sional modeling (e.g. ellipse quadrants), accounting for
asymmetry in crown geometry, as well as adding one or
two more shells for distribution of leaf area within the
crown envelopes. These features are in the FOREST model
by Cescatti [1997a, 1997b]. LAD from the FOREST model
is demonstrated in Law et al. [2001a], where the same field
measurement approach was used for canopy dimension
model parameters, and the model produced reasonable
LAD:s.

[44] Some error in the relative density profiles may result
from the difference in acquisition epochs of the radar (April
1998) and the field measurements (June 1999). The hyper-
spectral data were acquired coincident with the field data.
The discrepancy between the remote sensing and field
measurements at greater than 2 standard errors in Figure 5
could also be due to model assumptions such as those in (5).
Other assumptions in the radar and hyperspectral models
should be investigated, as well as the model assumptions in
estimating LAD from field data.

8. Conclusions and Plans

[45] This paper describes and demonstrates a quantitative
approach to the fusion of radar and hyperspectral data for
the estimation of the leaf area density of forests, which bears
on carbon sequestration and change due to biomass dynam-
ics. Multialtitude AIRSAR radar interferometric and polari-
metric data as well as AVIRIS hyperspectral-optical data
were acquired over the Metolius flux site in Central Oregon.
Quantitative, model-driven parameter estimation applied to
the combined data set yielded LAD(z). This approach
potentially applies to the estimation of many parameters
of interest describing vegetated land surfaces from remotely
sensed data.

[46] In this first attempt at LAD determination from
remote sensing data, the radar interferometric and polari-
metric data were analyzed with a physical model and
estimation procedure separately from the hyperspectral data.
A relative density profile was estimated from the radar data,
and a normalizing LAI was estimated from the hyper-
spectral data to determine the LAD. The multialtitude
interferometric data were most responsible for the relative
density profile, with some enhancement from the polari-
metric horizontal to vertical power ratio. The hyperspectral
data provided estimates of sub-pixel canopy cover [Lobell et
al., 2001] and LAI. Field estimates of LAD were obtained
from geometric measurements of trees and LAI data and a
physical model. The remote sensing agreement with the
field LAD was usually within 1-2 standard errors, suggest-
ing that some systematic errors were underestimated.

[47] One systematic error in the modeling effort probably
results from assuming Gaussian LAD profiles, when some
of the actual profiles are not Gaussian. The AVIRIS-derived
LAI measurements could be improved by incorporating a
better representation of conifer needle geometry and clump-
ing, both of which are known to cause errors in the estimate
of LAI in these forest types [Chen, 1996]. In addition, the
CANLAD model used on the field data likely had system-
atic errors when short trees were encountered, because of
the simplified representation of the crown envelope.

[48] Future attempts at combining interferometric and
polarimetric radar with hyperspectral data will include
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flying altitudes that are not multiples of each other. This
will diversify the data set and allow the estimation of
additional profile parameters to address the departure from
Gaussian behavior of the actual LAD profiles. Systematic
phase errors in the AIRSAR data, which forced the intro-
duction of phase offset parameters at the cost of the LAD
accuracy, will be phase calibrated more accurately in future
studies (E. O’Leary, personal communication, 2001). Future
analysis of the accuracy of the LAI estimation will be made
using all 20 forest plots and an improved photon transport
model with a better representation of needle clumping [Law
et al., 2001a; Chen and Black, 1992; Gower and Norman,
1991]. The CANLAD model will be improved with crown
shape coefficients to better represent crown structure of
short canopies.

[49] In future approaches to data fusion, all observations
from all data types will be analyzed in a unified model, as
in Figure 2, as opposed to the separate radar and hyper-
spectral approaches in this work. For example, future
quantitative-fusion estimations of LAD(z) will include the
explicit dependence of both radar and hyperspectral on
Rel(z;P), which was suppressed in (10) and (13). Other
observation dependences on common parameters that have
been ignored in this first demonstration of quantitative
fusion will be incorporated in future unified parameter
estimations. Scenarios in which common parameters are
simultaneously estimated from multiple sensors should
improve accuracy and facilitate the detection of systematic
errors, particularly when the observation vector is suffi-
ciently diverse to allow more complex, realistic relative
density profiles. Including lidar data [Lefsky et al., 1999],
for example, and a lidar physical model along with radar
and hyperspectral analyses will further improve perform-
ance. A unified approach to quantitative data fusion will
yield the estimation of LAD(z) and other common struc-
tural parameters; this will greatly facilitate global monitor-
ing of biomass and carbon dynamics.
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