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[1] Forest biomass was estimated from the remotely
sensed profiles of leaf area density. Biomass estimated
from forest structure profiles may be more accurate than that
determined from microwave power or optical radiance
measurements. Multialtitude, airborne, C-band, radar
interferometry produced relative density profiles, which
were normalized by leaf area indices from airborne
hyperspectral optical imagery, yielding the forest canopy
leaf area density for 11 structurally diverse stands in Central
Oregon. Fits of field biomass measurements to model
functions of remotely sensed leaf area density produced
agreement between the field and remotely sensed biomasses
at the level of 25 tons/ha, or 16% of the average stand
biomass. The errors in the field and remote sensing
observations indicated that this level of agreement was
significant with greater than 99.5% confidence. These
results suggest that further demonstrations may lead to a set
of model functions that enable global, structure-based
biomass remote sensing. INDEX TERMS: 1615 Global

Change: Biogeochemical processes (4805); 1640 Global Change:

Remote sensing; 1694 Global Change: Instruments and techniques.
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1. Remote Sensing of Biomass Via Forest
Structure

[2] Measurements of forest biomass are central to under-
standing carbon sequestration and change resulting from
natural and anthropogenic processes. Balancing the terres-
trial carbon budget, as well as detecting changes in land-use
patterns, calls for global remote sensing of forest biomass.
Global monitoring, in turn, requires model functions or
algorithms, F, which transform a set of remote sensing
observations into biomass, schematically represented as:

Biomassrs ¼ F Remote Sensing Observations; a; b; c . . .ð Þ; ð1Þ

The model function determining remotely sensed biomass,
Biomassrs, depends on parameters a, b, c. . .. A long-range
goal necessary for global biomass remote sensing is to

determine model functions, including associated parameters,
either a priori or from remote sensing data, for all regions of
interest around the globe. However, current demonstrations
determine F using field measurements, estimating a, b, c. . .
by minimizing the difference, in a least squares sense
[Hamilton, 1964], between Biomassrs and field biomass
measurements, Biomassf, for a set of ‘‘training’’ stands.
[3] Until remote sensing of 3-dimensional forest structure

became possible via radar interferometry [Treuhaft et al.,
1996; Treuhaft and Siqueira, 2000; Reigber and Moreira,
2000] and lidar [Lefsky et al., 1999; Drake et al., 2002],
relationships like (1) often derived remotely sensed biomass
from microwave power [Moghaddam et al., 1994; Dobson
et al., 1995; Luckman et al., 1997; Paloscia et al., 1999] or
optical radiance [Sader et al., 1989; Wu and Strahler, 1994;
Steininger, 2000]. Accuracies of these approaches, which
are generally worse than the desired 10–20% (10–40 tons/
hectare (ha) for most stands), in part reflect the radar and
optical ‘‘saturation’’ phenomenon. When saturation occurs,
radar power and optical reflectance generate biomass esti-
mates with large errors, particularly at large biomass values.
Additionally, for a given power or reflectance, biomass
depends strongly on the vertical distribution of vegetation,
as can be demonstrated from simple scattering and empirical
considerations [Imhoff, 1995; Treuhaft et al., 1996; Stei-
ninger, 2000]. Biomass estimates can erroneously span
values corresponding to the range of unmeasured vertical
structures. Structure measurements enable a new generation
of model functions, which describe the physical apportion-
ing of vegetation volume. They may therefore be simpler,
accurate, robust, and may lead to the long-range goal of
global biomass remote sensing.

2. Remotely Sensed Leaf Area Density

[4] In this demonstration, multialtitude, airborne C-band
radar interferometry generated relative density profiles,
which were constrained to be Gaussian. Hyperspectral
optical observations yielded the one-sided leaf area index
(LAI), which normalized the radar relative profiles to
produce the leaf area density (LAD), as detailed in Treuhaft
et al., 2002. Our version of F first generates the biophysical
vertical profile of LAD by performing a model-and-param-
eter-estimation process on the remote sensing observations,
and from LAD the biomass is then estimated, as shown
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schematically in Figure 1. The goal of this paper is to gauge
whether the accuracy and feasibility of using a remotely
sensed biophysical vegetation profile to estimate biomass
warrant pursuing this approach.
[5] The radar interferometric and hyperspectral optical

data were taken over the Metolious River Basin in Central
Oregon to produce remotely sensed LAD. LAI, tree dimen-
sions, and biomass were measured in the field for 11 1-ha
sites [Law et al., 2001a, 2001b] to generate field estimates
of LAD. These sites are diverse in species and successional
stage, many containing predominantly ponderosa pine,
others dominated by grand fir and larch. Some stands are
a mix of mature and large old trees, where the mature trees
exist at higher density, and are the first successful cohort
following exclusion of fire for the past 100 years. Other
stands are spatially uniform in age, and some contain sparse
vegetation. These stands span a biomass range from 24–
295 tons/ha, with a mean of 161 tons/ha.
[6] The NASA Airborne Synthetic Aperture Radar (AIR-

SAR) [Zebker et al., 1992] and the Airborne Visible and
Infrared Imaging Spectrometer (AVIRIS) [Green et al.,
1998] flew over a 20 � 10 km area in the spring and
summer months of 1998, 1999, and 2000.

3. From Leaf Area Density to Biomass

[7] The general form of F relating the remotely sensed
biomass to LAD in this paper is:

Biomassrs ¼ F

Z
LAD zð Þf zð Þdz

� �
; a; b

� �
: ð2Þ

In (2), F involves a set of functions, f(z), which weight
LAD(z) in a set of integrals (denoted by {}) over the vertical
coordinate z. Nonlinear least-squares approaches estimate
two parameters a, b [Hamilton, 1964]. The observations and
parameter-generated quantities are related by
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ẑ0if g
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where field biomass for stand i is Biomassfi, and efi is the
field biomass measurement error. Below the field
biomasses in the observation vector on the left are the
remote sensing observations z0i, the location of the
Gaussian peak of LAD, si, the Gaussian standard
deviation, and LAIi, the remotely sensed leaf area index,
as explained in Treuhaft et al., 2002. Parameters in the
vector to the right of the equal sign, corresponding to each
of the remote sensing structural observations and indicated
with hats, are estimates of the actual remote sensing
observations, given their errors and the fit suggested by
(3). These parameters are used to calculate the model
Gaussian LADs and biomasses, explicitly shown in (4a).
Allowing estimates of these remote sensing parameters to
shift away from the observations, constrained by the
remote sensing observation errors ez0i, esi

, eLAIi in the error
vector, is a way of accounting for those errors, and is an
important component of assessing the performance of
variants of F [Bierman, 1977]. Minimizing the difference
between the observations to the left of the equal sign and
the quantities in the vector to the right, in a least-squares
sense, yields all the parameter estimates. Values of LAI
observations in (3) ranged from 0.3 to 5.7, and the LAI
observation errors from hyperspectral data were about 5–
10%. Radar observations of Gaussian peak locations
ranged from 0 to 24 m, while Gaussian standard
deviations were between 0.4 and 20 m. Errors on the
radar structure parameters generating LAD were typically
in the 1–2 meter range.
[8] Demonstrating the feasibility of the approach in (2)

entails finding a model function F which, when the param-
eters in (3) are estimated, brings the reduced c2 (c2 per
degree of freedom) close to unity [Hamilton, 1964] and
produces an RMS difference between the field and remotely
sensed biomasses that is in the 10–40 tons/ha range. Four
trial LAD model functions, (4a) through (4d), were used to
estimate the parameters in (3). The resulting RMS differ-
ences between field and remote sensing biomasses and
reduced c2s are in Table 1 for each trial F. The first three
model functions, (4a) through (4c), were simple functions of
LAD involving its total integral, LAI, its standard deviation,
szi, and its mean, �zi. The fourth variant of F, chosen on the
basis of inspection of the remote sensing LADs and the field
biomasses, depends on all of the LAD-related quantities in
(4a), (4b), and (4c). The 4 structure-based trial functions,
plus one additional involving C-band radar power for the ith

stand, pi, (for completeness), are

Figure 1. Schematic diagram of estimating biomass from
radar and hyperspectral data via leaf area density. Leaf area
density is produced by performing a model-and-parameter-
estimation process on the remote sensing observations. The
dashed box contains F of (1).
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2ŝ2
i

� �
R1
0

exp
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[9] Figure 2 shows the field-measured biomass for the 11
stands in Central Oregon versus the remotely sensed bio-
mass, as determined by adjusted parameters using the best
performing model function (4d). The RMS scatter of
remotely sensed biomass about field biomass is 25 tons/ha
The high and improbable value of 2.0 for the reduced c2 of
even the best relation (4d) suggests either the need for
refinement of (4d) or reassessment of the field or remote
sensing errors, increasing them by about 40% [Hamilton,
1964]. Monte Carlo simulations with random noise for the
remote sensing observations show that, given the field and
remote sensing errors, the RMS scatter and reduced c2 for
(4d) could be realized serendipitously only 0.5% of the
time, confirming a 99.5% confidence on the significance of
the performance of (4d).

4. Prognosis for Global Structure-Based Biomass
Measurements

[10] The results of this paper indicate that the aggregate
accuracy of relation (4d) and the field and remote sensing
measurements is approximately 25 tons/ha, or 16% of the
mean values observed in the field. These results suggest that,
in order to isolate the accuracy of relations like (4d), addi-
tional higher accuracy structure-based demonstrations

should focus on different regions of the Earth, spanning
diverse forest vegetation types. Future demonstrations will
also rely on lidar profiling [Drake et al., 2002], which, when
fused with radar interferometric and hyperspectral observa-
tions [Slatton et al., 2001], may produce the most robust,
global vegetation structure measurements. The best model
function in this study (4d) may not be optimal for different
forest species, climates, or topographic settings. Ideally, a
generic set of model functions of forest structure will be
determined to enable global remote sensing of biomass.
Ultimately, structure measurements may play a role in
specifying model functions and their parameters(a and b in
this study). Other data, such as topographic or spectroscopic
measurements beyond LAI, may also contribute to model
function specification, enabling true remote sensing by
minimizing the need for extensive field measurements.
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