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a b s t r a c t

Species distribution models were developed for three high economic value timber trees

(Calophyllum brasiliensis, Carapa guianensis and Virola surinamensis) that are heavily harvested

in the Amazon Basin. A combination of habitat measurements extracted from remote sens-

ing data (MODIS, QSCAT and SRTM) and bioclimatic surfaces was examined to ascertain the

most influential factors determining the occurrence of these tree species. The prediction of

species’ occurrence rates was tested separately for each species distribution model and the

results were examined for their ability to accurately map the spatial distribution of these

tree species. By evaluating the omission and commission rates we concluded that species

distribution models based on remote sensing data contributed significantly in quantifying

environmental properties used to summarize the ecological niche of each tree species. Spe-

cific vegetation characteristics (such as percentage of tree cover, vegetation moisture and

roughness, annual NDVI and mean LAI during the dry LAI) showed the dependence of these

species’ occurrence in more densely vegetated forests. Areas with high leaf area (even dur-

ing the dry months) and areas with high vegetation moisture were predicted as potential

species habitat for C. brasiliensis. The density vegetation during the dry season and vegeta-

tion phenology were strongly correlated with climate differences, such as variations in air

temperature and precipitation seasonality for V. surinamensis. Lower elevation areas with

more exuberant vegetation and a high greenness index were among the most important
factors accounting for the geographical distribution of C. guianensis. Species distribution

models are increasingly important in many fields of research and conservation. The poten-

tial of remotely sensed data to monitor environmental changes in tropical areas, along with

the understanding of ecosystem function, are both critical for conservation of biodiversity

and the long-term process of sustaining ecosystems.
Please cite this article in press as: Prates-Clark, C.C., et al., Predicting geogra
Basin using remotely sensed data, Ecol. Model. (2007), doi:10.1016/j.ecolm

∗ Corresponding author at: School of Geographical Sciences, University
E-mail address: Cassia.Prates-Clark@bristol.ac.uk (C.D.C. Prates-Cla

304-3800/$ – see front matter © 2007 Elsevier B.V. All rights reserved.
oi:10.1016/j.ecolmodel.2007.09.024
phical distribution models of high-value timber trees in the Amazon
odel.2007.09.024

© 2007 Elsevier B.V. All rights reserved.

of Bristol, University Road, Bristol, BS8 1SS, UK.
rk).

dx.doi.org/10.1016/j.ecolmodel.2007.09.024
mailto:Cassia.Prates-Clark@bristol.ac.uk
dx.doi.org/10.1016/j.ecolmodel.2007.09.024


 INECOMOD-4946; No. of Pages 15

i n g
ARTICLE
2 e c o l o g i c a l m o d e l l

1. Introduction

Selective logging is the process where a limited number of
specifically targeted, marketable timber trees (rather than all
trees within a specific logged area), are cut down (Verı́ssimo
et al., 1992). However, little is known about the extent and the
impact of selective logging in the world’s tropical forests, or the
impact of such logging on the environment. Selective logging
causes widespread collateral damage to the trees that remain,
to the sub-canopy vegetation and the surrounding soil—all of
which, in turn, has an impact on hydrological processes, soil
erosion, the heightened probability of forest fires, carbon stor-
age and, of course, on forest-based animals and plants (Uhl
and Vieira, 1989; Nepstad et al., 1999; Asner et al., 2005).

In tropical rainforests, economically valuable timber trees
can be diverse and abundant (Connell, 1978; Nepstad et al.,
2004). Tropical forests in the Amazon Basin contain a large
number and a wide range of commercially valuable trees, such
as those from the Clusiaceae, Meliacaeae, Myristicaceae and
Bignoniaceae, families (Mori and Prance, 1990b). Because of
their high economic value, such timber is often heavily har-
vested and, consequently, the more valuable tree species are
becoming increasingly scarce in those areas which have been
most heavily logged. For this reason, particular species of tim-
ber trees often have been earmarked for special attention in
conservation and forest management practices (Carvalho et
al., 2002; Nepstad et al., 2004).

To date, apart from maps of species’ occurrences obtained
from field guide information (de Oliveira and Mori, 1999; Fisch
and dos Santos, 2001; Vinson et al., 2005), there has been no
research conducted into the systematic distribution ranges of
timber trees with high economically valuable. The develop-
ment of predictive distribution models for these trees may
help researchers answer questions such as how and why tim-
ber trees are spatially distributed, which factors limit their
dynamic ranges, and how these species are likely to respond to
both human disturbances and global environmental changes.
Timber trees, due their high economic value, also serve as
drivers for deforestation and logging. Predicting the geograph-
ical ranges of such tree species can therefore help researchers
determine which areas are most likely to be exploited at
some future date. Information about the geographical dis-
tribution and abundance of such species would also help
prevent subsequent logging by locating areas to be protected
or conserved—information that would be of obvious benefit to
governmental and non-governmental institutions such as the
Convention on International Trade in Endangered Species of
Wild Fauna and Flora (CITES), the Forest Stewartship Council
(FSC), and the World Wildlife Fund’s (WWF) timber certifica-
tion, which promotes programs to conserve the world’s forests
and biodiversity.

As a consequence of the aforementioned points, the objec-
tive of this study was to answer the following questions: (1)
how widely distributed are three high economic value tim-
ber trees (Calophyllum brasiliensis, Carapa guianensis and Virola
Please cite this article in press as: Prates-Clark, C.C., et al., Predicting geogr
Basin using remotely sensed data, Ecol. Model. (2007), doi:10.1016/j.ecolm

surinamensis) across the Amazon Basin? (2) Which biophysical
attributes (derived from satellite imagery) comprise the eco-
logical niche of these tree species? (3) Which ecological (and
other geographical) factors have an impact on the geographi-
 PRESS
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cal distribution of these three tree species? In order to begin to
answer these questions we first developed predictive distribu-
tion models for each of the three tree species we studied based
on the estimated probability of species’ occurrence and then
we analysed the results of these models. We also evaluated
the accuracy of these models using threshold-independent
measures and re-sampling techniques, such as bootstrap. Sub-
sequently, we investigated the historical processes that may
explain evident differences between the ‘potential’ and ‘true’
geographical ranges (Soberón and Peterson, 2005) of these tree
species. Finally, we discuss how environmental changes such
as forest loss due to deforestation might affect their occur-
rence.

2. Methods

2.1. Study species

Three commercial timber tree species C. brasiliensis (Clusi-
aceae), C. guianensis (Meliaceae) and V. surinamensis (Myristi-
caceae) from the herbarium collection of the 2000–2002 New
York Botanical Gardens were used to generate the species
distribution models. Herbarium specimens represent primary
occurrence data used to approximate the geographical distri-
bution of a species. Total number of point localities used for
each tree species was: 81 for C. brasiliensis, 79 for C. guianensis
and 125 for V. surinamensis. (No duplicate point localities were
included in the models.) Generally, more accurate predictions
can be made with a larger number of point localities (Guisan et
al., 2007). However, significant model degradation might occur
due to error on georeferencing data points (Engler et al., 2004).
Hence, it is essential to evaluate the trade-off between the
number of occurrence samples available at herbarium or atlas
museums for the modelling and the location accuracy of data.

Habitats where these trees were observed (Fig. 1) ranged
from lowland to highland forests, a variety of riverine forests,
and forests ranging from secondary succession to old growth.
C. brasiliensis (jacareúba) is a canopy tree typical of the humid
tropical forests that extend from southern Mexico to the
northern parts of South America (Record and Hess, 1943). It
can be found from sea level up to 1500 m altitude in areas
with an annual rainfall above 3000 mm and a temperature of
24–28 ◦C (Marques and Joly, 2000; Fisch and dos Santos, 2001).
This species frequently grows in evergreen lowlands, moun-
tain forests, gallery forests and sloped areas with alluvial or
clay soils, even when these areas are very humid such as in
the Amazon ‘varzeas’ (i.e. seasonally flooded lowland forests)
(King, 2003). Typically, C. brasiliensis is 40–50 m in height, 1.80 m
diameter at breast height (dbh) and has a straight, cylindri-
cal trunk with a dense crown and irregular branches. This
species produces fruits annually, which mature between Octo-
ber and November. C. brasiliensis is one of the most important
of the Latin America tree species and has been heavily har-
vested because of the quality of its wood which is often used as
an alternative to mahogany (Swietenia mahagoni) (King, 2003).
aphical distribution models of high-value timber trees in the Amazon
odel.2007.09.024

The wood is heavy, with a specific weight of 0.45–0.69 g/cm3

(Carpenter et al., 2004).
C. guianensis (andiroba) is a climax tree that occurs in the

West Indies, through Central America down to the Amazonian

dx.doi.org/10.1016/j.ecolmodel.2007.09.024
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Fig. 1 – Data points of species’ occurrence for Calophyl

ainforest including the overflow delta lands of the Orinoco
n Venezuela (Hall et al., 1994; Forget, 1996). This tree species
ommonly establishes itself on rich soils, along streams and in
he periodically inundated swamp forests and uplands forests
long the rivers of the Amazon Basin (Guariguata and Dupuy,
997; Guariguata et al., 2000). It is also cultivated in Brazil in the
slands region, Tocantins, Rio Solimões and near shorelines
Vianna, 1982). It has been observed in altitudes ranging from
to 1200 m, in areas with mean annual rainfall 1500–3200 mm
nd a mean annual temperature of 24–26 ◦C (Hall et al., 1994).
. guianensis is a tall rainforest tree that grows approximately
0 m in high and has a diameter of up to 1.20 m. It is one of
he large-leafed trees of the rainforest and can be identified
y its large and distinctly textured leaves (Guariguata et al.,
002). The main stems from C. guianensis are straight with low
amparts (Hall et al., 1994) and its timber is often exported
or use in fine-wood products as it is in the same family as

ahogany and has even been called the ‘Brazilian mahogany’
Vinson et al., 2005).

The geographical distribution of V. surinamensis extends
rom the Lesser Antilles throughout northern South Amer-
ca down to Bolivia and around Northeast Brazil (Howe et al.,
985; Fisher et al., 1991). This species grows on humid habi-
ats (average annual precipitation is 2500 mm), from sea level
o 1100 m altitude, with a mean monthly temperature rang-
ng from 26 to 27 ◦C. V. surinamensis (ucuúba) prefers swampy,
ertile habitats, periodically flooded riverbanks that occur in
arzea forests along the Amazon River and its muddy tribu-
aries (Lopes et al., 2004). It generally occurs in open forest gaps
Howe, 1990). This tree species grows slowly until it attains
Please cite this article in press as: Prates-Clark, C.C., et al., Predicting geogra
Basin using remotely sensed data, Ecol. Model. (2007), doi:10.1016/j.ecolm

5–35 cm of dbh, after which it accelerates considerably as, at
his dbh, the crown is probably finding its place in the sun
Rodrigues, 1980). V. surinamensis flowers twice a year with
ruiting in May–June and November–December (Bena, 1960).
rasiliensis, Carapa guianensis and Virola surinamensis.

V. surinamensis is also an economically high-value species and
has been harvested because of its resistant timber and pulp
paper purposes (Howe, 1990; Lopes et al., 2004).

The development of species distribution models requires
species point localities and environmental data layers con-
taining the possible range of environmental properties (e.g.
surface elevation, percent tree cover, air temperature, rainfall)
that provide the potential species’ habit requirements. The
environmental layers used to model the potential distribution
of C. brasiliensis, C. guianensis and V. surinamensis are described
below.

2.2. Remote sensing environmental layers

Remote sensing data represent a source of direct mea-
surements of environmental variables that can be used in
ecological studies. The environmental data layers extracted
from remote sensed data used in this study cover a range
of vegetation and landscape variables such as topography,
vegetation greenness, leaf area, moisture, roughness, and sea-
sonality. These variables are listed in Table 1.

2.2.1. Vegetation type, seasonality and productivity
These layers provide a measure of above-ground biomass,
vegetation cover types, seasonal changes in the greenness
of vegetation and vegetation canopy characteristics esti-
mated from remote sensing data from Moderate Resolution
Imaging Spectroradiometeter (MODIS) satellite on board the
Terra National Aeronautics and Space Administration (NASA)
spacecraft. The monthly (2000–2004) MODIS data were con-
phical distribution models of high-value timber trees in the Amazon
odel.2007.09.024

verted into annual normalized difference of vegetation index
(NDVI) and leaf area index (LAI) metrics. In ecological studies,
NDVI data have been used to estimate leaf biomass and the
net primary productivity because NDVI values are associated

dx.doi.org/10.1016/j.ecolmodel.2007.09.024
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Table 1 – List of remote sensed data and products used in this study

Data record Instrument Vegetation/landscape parameter RS metrics at 5 km resolution

Monthly NDVI (2000–2001) MODIS Vegetation type and seasonality

NDVI-1: maximum NDVI
NDVI-2: annual mean NDVI
NDVI-3: mean NDVI wet months
NDVI-4: mean NDVI dry months

Monthly (2000–2001) leaf
area index (LAI)

MODIS Vegetation type, seasonality, productivity

LAI-1: maximum LAI
LAI-2: annual mean LAI
LAI-3: mean LAI wet months
LAI-4: mean LAI dry months

Percent tree cover (2000–2001) MODIS Forest cover and heterogeneity VCF: continuous field product

Scatterometer backscatter
monthly composites at 1 km
(1999–2004)

QuickSCAT
Vegetation moisture, leaf/wood
density

QSCAT-H: mean backscatter HH
QSCAT-V: mean backscatter VV
QSCAT-SH: std. backscatter HH
Digital elevation (100 m
resolution) 2000

SRTM
Surface
elevation

to the photosynthetically active radiation of plant canopies
(Tucker, 1979; Tucker et al., 1983). NDVI metrics also have
provided valuable information about vegetation phenology
because NDVI values are influenced by the loss of vegetation
due to relative seasonal changes in vegetation (Boone et al.,
2000). LAI data layers provide a measure of foliage density of
vegetation and structure of the vegetation canopy (Myneni et
al., 1997, 2002). Each LAI layer was converted into a grid cell
at the same spatial resolution, i.e. 5 km2. The resulting NDVI
layers show the vegetation greenness values within each 5 km
pixel (range −1 to 1).

2.2.2. Forest cover
Forest cover and heterogeneity information was obtained from
the MODIS satellite 500 m global vegetation continuous fields
(VCF) data set (Hansen et al., 2000, 2002). This layer includes
proportional estimates of forest canopy cover derived from a
global data set collected between 2000 and 2001 (DeFries et al.,
2002). The MODIS VCF Percent Tree Cover was re-sampled to a
5 km2 spatial resolution to provide both an estimate of forest
cover and a threshold to separate areas of dense from sparse
deforested and fragmented vegetation.

2.2.3. Vegetation moisture leaf/wood density
Vegetation surface properties (such as moisture content, leaf
size and branch orientation) were obtained from monthly
composite scatterometer image data (i.e. QuickSCAT), The
SeaWinds scatterometer aboard the QuickSCAT satellite pro-
vides near-daily global coverage of the Earth at intrinsic
resolutions generally between 25 and 50 km2, over incidence
angles ranging from 20 to 55◦, making both vertically and hor-
izontally polarized measurements. A scatterometer transmits
radar pulses and receives backscatter data that is less sensitive
to atmospheric effects than the passive microwave sensors
(Lin, 1998; Long and Drinkwater, 2000). As the intensity of the
backscattering depends on the roughness and dielectric prop-
Please cite this article in press as: Prates-Clark, C.C., et al., Predicting geogr
Basin using remotely sensed data, Ecol. Model. (2007), doi:10.1016/j.ecolm

erties of a particular target (Long et al., 2001), if the surface
being studied is the vegetation cover, preferential alignment
of surface scatters, canopy surface roughness, moisture con-
tent, leaf size and density will influence the intensity of the
QSCAT-SV: std. backscatter VV

SRTM-HGT: mean elevation
SRTM-STD: ruggedness factor

backscattering. Although, the QuickSCAT layers used in this
study are based on monthly composite data at a 1 km2 spatial
resolution obtained during 1999–2004 period at dual polariza-
tion (Long et al., 2001), these layers were also aggregated to a
5 km2.

2.2.4. Surface elevation
This data layer provides topography and standard deviation
surface elevation as an index of ruggedness. Elevation data
on a near global scale were obtained from the Shuttle Radar
Topography Mission (SRTM; NASA, 2006). Using the median
value, the high-quality and high spatial resolution provided
by SRTM (i.e. 90 m resolution digital elevation; Jarvis et al.,
2004) was aggregated to a 5 km spatial resolution to maintain
consistency with other environmental layers.

2.3. Climate data

The climate data set used for this study was obtained from
the free access web site at http://www.wordclim.org. The set
of global climate layers (i.e. WorldClim) includes annual time-
series with mean monthly data for precipitation, and mean,
minimum and maximum temperatures obtained from over
4000 weather stations between 1950 and 2000 (Hijmans et
al., 2005). This data set, which comprises climate data from a
number of spatial resolutions, was spatially interpolated with
latitude, longitude and surface elevation to produce climate
data on grids. A number of different statistical approaches
have been used to generate interpolated climate surfaces (New
et al., 1999, 2002; Daly et al., 2002). Compared to other global
climate data sets, WordClim has the advantage of providing
climate data from a larger number of stations. WordClim uses
an algorithm that considers every station (instead a subset
of stations) as a data point. Duplicate records were removed
since only station records further than 5 km away from sta-
tions already in the data set was included. A second-order
aphical distribution models of high-value timber trees in the Amazon
odel.2007.09.024

spline with latitude, longitude and elevation data at finer
spatial resolution (i.e. SRTM) as independent variables was
used to fit the model. As a result, the lowest overall cross-
validation errors compared to other settings (i.e. third-order

dx.doi.org/10.1016/j.ecolmodel.2007.09.024
http://www.wordclim.org/
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pline or elevation as a covariate) were achieved (Hijmans et
l., 2005).

To maintain consistency with the RS-data sets, each cli-
ate original layer obtained from WordClim was gridded to

he 5 km spatial resolution data layers used in this study.
he 19 bioclimatic variables used in this study are those
ne produced by Hijmans et al. (2005), i.e.: ‘annual mean
emperature’, ‘mean diurnal range’, ‘isothermality’, ‘tempera-
ure seasonality’, ‘maximum temperature of warmest month’,
minimum temperature of coldest month’, ‘temperature
nnual range’, ‘mean temperature of wettest quarter’, ‘mean
emperature of driest quarter’, ‘mean temperature of warmest
uarter’, ‘mean temperature of coldest quarter’, ‘annual pre-
ipitation’, ‘precipitation of wettest month’, ‘precipitation
f driest month’, ‘precipitation seasonality’, ‘precipitation
f wettest quarter’, ‘quarter precipitation of driest quarter’,

precipitation of warmest quarter’, ‘precipitation of coldest
uarter’.

.4. Model generation

or each species, the ‘Potential Species Distribution Model’
PSDM) was developed from a set of environmental variables
or a set of grid cells, together with a set of data point loca-
ions where the species had been observed. The ‘Maximum
ntropy Approach’ within the Maxent computer program for
odelling species geographic distributions (v.2.1; Phillips et

l., 2006) was employed to generate the PSDM for the three
ree species studied.

Maxent is a general-purpose program that generates pre-
ictions (or inferences) from incomplete information. Maxent
nables researchers to estimate a target probability distri-
ution by finding the probability distribution of maximum
ntropy, subject to a set of constraints that represent the
ncomplete information about the target distribution (Della
ietra et al., 1997). When the maximum entropy approach is
pplied to species distribution models, the pixels with known
pecies occurrence records from the study area (training data
oints) produce the region on which the probability of maxi-
um entropy is defined. The available information about the

arget distribution often presents itself as a set of environ-
ental variables. The environmental layers are also used to

roduce assertions which constrain the probability distribu-
ion that can be computed (Phillips et al., 2006).

The variable constraints are the expected values of each
eature that should match its empirical average (i.e. the aver-
ge value for a set of training points taken from the target
istribution (Phillips et al., 2004). The predictive performance
f the PSDM is influenced by the choice of feature types and
egularization constants, with quadratic versions of variables
eing used to capture possible non-linear responses (Phillips
t al., 2006).

The probability of species’ occurrence is displayed in terms
f “gain”—the log of the number of grid cells minus the log

oss (i.e. the average of the negative log probabilities of the
ample locations). The gain increases, iteration by iteration,
Please cite this article in press as: Prates-Clark, C.C., et al., Predicting geogra
Basin using remotely sensed data, Ecol. Model. (2007), doi:10.1016/j.ecolm

ither until the change from one iteration to the next falls
elow the intrinsic accuracy measure (convergence thresh-
ld) or until the maximum number of iterations have been
erformed (Anderson et al., 2003; Dudik et al., 2004).
 PRESS
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Initially, each environmental variable used as input data
was potentially an important predictor variable to develop the
PSDM. As part of Maxent internal procedures, the ‘jackknife
test’ re-sampling method (Efron, 1979; Peterson and Cohoon,
1999) was applied, both to reduce the bias of correlated envi-
ronmental variables and to diagnose which environmental
variables were the most important predictor variables to cre-
ate the PSDM. The environmental variables with the highest
gain, when used in isolation to generate the model, are dis-
played as bar charts. The longer the length of the bar charts
the higher the relative importance of variables that, poten-
tially, contribute to generating the species distribution model
(Phillips et al., 2004).

The influence of each environmental variable on Maxent’s
prediction is displayed in response curve diagrams. As the
Maxent model is an exponential model (Della Pietra et al.,
1997), the probability assigned to a pixel is proportional to
the exponential contribution of each environmental variable.
The response curves show the Maxent exponent prediction
changes as each environmental variable is varied, when all
other environmental variables are maintained at their average
sample value (Phillips et al., 2006).

2.5. Model validation

The predictive species distribution models were tested by
using two different sets of data: (1) a data set for model build-
ing (i.e. the training data set), and (2) a data set for model
validation (i.e. the test data set). Following Maxent proce-
dures, two types of evaluation tests were internally applied:
the threshold-dependent and the threshold-independent evalu-
ation.

A low omission rate of species’ occurrence is necessary for
developing a potential model for predicting species’ distribu-
tion ranges (Anderson et al., 2003). After applying a threshold,
model performance can be investigated using both: (i) the
“extrinsic omission rate” (i.e. the fraction of the test data
points that fall into pixels not predicted as suitable for the
species); (ii) the “proportional predicted area” (i.e. the fraction
of all the pixels predicted as being suitable for the species).
A one-tailed test (i.e. a tool for assessing whether the omis-
sion rate is either lower or higher than random; Tukey, 1977)
was used to determine whether the model could significantly
predict the test localities.

A second way in which model performance was compared
was via the use of ‘Receiver Operating Characteristics’ (ROC)
curves. ROC analysis is the standard approach used to evalu-
ate the sensitivity and the specificity of diagnostic procedures
(Swets and Pickett, 1992). Sensitivity (also known as the ‘true
positive rate’) represents the absence of omission error, and
the quantity 1-specificity (also known as the ‘false positive
rate’) represents the commission error (Cantor et al., 1999).
By tradition, the ROC curve is a representation of the trade-
offs between the omission and commission error. This curve is
obtained by plotting sensitivity on the y axis and 1-specificity
on the x axis for all possible thresholds (Swets, 1988). If the
phical distribution models of high-value timber trees in the Amazon
odel.2007.09.024

ROC curve rises rapidly towards the upper left hand corner
of the resulting graph, the sensitivity rate is high and the 1-
specificity rate is low. If the ROC curve follows a diagonal path
from the lower left hand corner to the upper right hand cor-

dx.doi.org/10.1016/j.ecolmodel.2007.09.024
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Table 2 – The potential predictor variables used to
generate the RS and Climate distribution models

RS Climate

Calophyllum brasiliensis
LAI of driest quarter and its

seasonality (LAI-4 and LAI-2)
Annual precipitation

Vegetation moisture and
roughness (QSCAT-H)

Precipitation of the wettest
month

Percent of tree cover Precipitation of the wettest
quarter
Precipitation of coldest
quarter
Temperature seasonality

Carapa guianensis
Elevation (SRTM) Temperature annual range
Vegetation moisture and

roughness (QSCAT-H)
Mean diurnal range

Maximum NDVI Minimum temperature of
coldest month

LAI of driest quarter (LAI-4) Temperature seasonality

Virola surinamensis
Elevation (SRTM) Mean diurnal range
LAI of driest quarter (LAI-4) Temperature seasonality

Canopy moisture and
roughness (QSCAT-H, -V and

Annual precipitation
ARTICLE
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ner, every improvement in the 1-specificity rate is matched by
a corresponding decline in the sensitivity rate.

The area under the ROC curve (AUC) represents a partic-
ularly important metric for evaluating diagnostic procedures
because it represents the average sensitivity over all possi-
ble specificities. The AUC provides a single measure of model
performance, independent of any particular choice of thresh-
old value (Swets and Pickett, 1992). It is possible to quantify
how quickly the ROC curve rises to the upper left corner of
the graph by measuring the area under the curve. The larger
the AUC, the higher is the sensitivity rate and the lower is
the 1-specificity rate. An AUC equal to 1.0 represents an ideal
diagnostic test because it achieves both perfect 100% sensi-
tivity and 100% specificity. If the AUC is 0.5, the test has 50%
sensitivity and 50% specificity which indicates that sensitivity
(omission error) and 1-specificity (commission error) rates are
high (Cantor et al., 1999; Liu et al., 2005).

When only presence data are available, it would appear
that ROC curves are inapplicable since, without absences,
there seems to be no source of negative instances via which
a researcher is able to measure specificity. However, this
problem can be circumvented by distinguishing a sample of
positive instances (the presence localities) from a sample of
pseudo-absence instances or background points (i.e. pixels
localities where the species has not been found and selected
uniformly at random from the entire geographical space cov-
ering the study area) (Stockwell and Peters, 1999; Graham et al.,
2004). The total numbers of background points used for each
species were: 10,061 for C. brasiliensis, 10,060 for C. guianensis
and 10,094 points for V. surinamensis.

3. Data analysis

The species distribution models for each of the three tree
species studied were based on point localities (83, 64 and 88,
respectively, C. brasiliensis, C. guianensis and V. surinamensis) as
well as 34 environmental variables obtained from both biocli-
matic surfaces and satellite imagery (Table 1).

For each tree species, three different PSDM were generated
using three different suites of input data: bioclimatic surfaces,
RS-data sets, and a combination of RS and bioclimatic vari-
ables. There were two principal reasons for treating these
input data sets separately. First, in order to ascertain which
data sets (i.e. bioclimatic and RS-data) would produce the best
predictive species distribution model (i.e. the highest rates
of model predictions where the species were sampled) and
also to identify the environmental variables that comprises
its species ecological niche. Second, in order to determine if
a model with a better potential to predict species’ occurrence
could be developed by using a combination of the potential
predictor bioclimatic and remote sensed variables selected
from the previous two species distribution models.

The first model (henceforth, the ‘Climate-model’) was gen-
erated solely from only bioclimatic variables (i.e. the 19 climate
variables described in Hijmanns et al., 2005). Subsequently, the
Please cite this article in press as: Prates-Clark, C.C., et al., Predicting geogr
Basin using remotely sensed data, Ecol. Model. (2007), doi:10.1016/j.ecolm

re-sampling jackknife test was applied to identify the impor-
tant predictor environmental variables used to generate this
model. A second model (the ‘RS-model’) was generated using
the environmental variables extracted from the remote sensed
-SV)
Precipitation of the wettest
month

data set listed in Table 1; and the jackknife test within the Max-
ent package was applied to determine the potential predictor
variables for generating this model. Another approach to map
the geographical range of the tree species was to use those
predictor variables that potentially predict species’ occurrence
from the previous two models as input data to generate a third
PSDM (‘RS and Climate-model’). Again, the jackknife test was
applied to this model.

To assess whether the models’ performance obtained for
the three initial models could possibly be improved, we also
considered the success rate of species prediction via a reduced
input data set. The criteria for selecting a reduced number
of environmental variables was based on the environmental
variables that the jackknife test indicated as being the most
influential predictor variables to determine the probability of
species’ occurrence in the three initial models. Because mod-
els for different species included different predictor variables,
the set of new input data for which predictions could be made
was not identical for the three tree species.

Maxent was used to plot the omission against threshold,
the predicted area against threshold, the ROC curve and the
AUC. The threshold-dependent binomial test (based on omis-
sion/commission error and predicted area) was also used to
verify whether the model generated from the use of training
and test data performed significantly better than random.

To investigate the appropriate size of the test sample to be
used to evaluate each model’s performance, 10 levels of test
aphical distribution models of high-value timber trees in the Amazon
odel.2007.09.024

sample sizes (i.e. 5, 10, 15, 20, 25, 30, 35, 40, 45 and 50% of the
sample records) were used as thresholds. If more points are
dedicated to testing models, the number of points available for
building the models become reduced and may affect the sta-

dx.doi.org/10.1016/j.ecolmodel.2007.09.024
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Table 3 – Comparisons of ‘RS’, ‘Climate’ and ‘RS and
Climate’ models performances for Calophyllum
brasiliensis, Carapa guianensis and Virola surinamensis

Balance
thresholda

Fraction of
predicted area

AUC

Calophyllum brasiliensis
RS 1.501 0.888 0.728
Climate 2.007 0.858 0.751
RS and Climate 1.537 0.575 0.877

Carapa brasiliensis
RS 0.500 0.678 0.880
Climate 4.504 0.440 0.898
RS and Climate 1.502 0.625 0.825

Virola surinamensis
RS 2.001 0.624 0.855
Climate 1.250 0.625 0.852
RS and Climate 1.250 0.575 0.877
ARTICLE
e c o l o g i c a l m o d e l l i

istical power of the tests (Parra et al., 2004; Phillips et al., 2006).
ven so, for each of these test sample sizes, one data set for
raining was created by randomly sampling a specified num-
er of presences (i.e. point localities) and background points
ithout replacement from the original presences and back-

round points, respectively. Ten species distribution models
ere generated using each created training data set, and each
f the resulting models was applied to the test data sets for
he three suites of input data. This procedure was repeated
hree times—i.e. once for each tree species. For each set of
nput data, the adequate test sampling size was determined
y models’ evaluation, including p-values, AUC (by a single
umber) and fraction of predicted area.

To assess the potential of bioclimatic variables and
emote sensed data for modelling the geographical dis-
ribution of species for each tree species, we compared
eparately the species distribution models derived solely
rom climate variables (‘Climate-model’), RS-data sets (‘RS-

odel’), and the combination of data of the two data sets
‘RS and Climate-model’). The threshold-independent and
hreshold-dependent analyses were then applied to evaluate
he performance of each model. Subsequently, the perfor-

ance of the best models for each tree species produced
as evaluated by extracting the cumulative probabilities at

ach point depicted as being the most appropriate habitat (i.e.
here species were observed). Thresholds of 30, 40, 50, and

5% probability of species’ occurrence were established and
he number of species above a given threshold was calculated.
his provided information which threshold made the greatest
ontribution to the model, and also indicated which model
hould be retained as the best potential predicting species dis-
ribution model. Finally, for each tree species, the model based
n (i) the lowest omission/commission rates, (ii) highest AUC,

iii) higher percentage of probability of species’ occurrence at
oint localities, and (iv) a set of predictor variables biologically
eaningful to summarize the ecological niche of its species,
as selected as the model that would most accurately predict

he tree species’ potential geographical distribution.

. Results

.1. Contribution of input data layers

hree approaches using different suite of input data (‘RS’,
Climate’, and ‘RS and Climate’) were used to generate poten-
ial predicting species’ occurrence models for C. brasiliensis,
. guianensis and V. surinamensis. The comparisons between
he RS-, Climate-, and RS and Climate-models’ performance
ere based on both the threshold-dependent and threshold-

ndependent tests and the entire point localities data for each
pecies. Three indicators were used to evaluate the accuracy
f the species distribution models: (i) balance threshold for
ptimizing omission and commission rates; (ii) the fraction of
redicted area; (iii) the AUC.

The success rates for model predictions evaluated by AUC
Please cite this article in press as: Prates-Clark, C.C., et al., Predicting geogra
Basin using remotely sensed data, Ecol. Model. (2007), doi:10.1016/j.ecolm

ere relatively similar for the different suites of input data and
ere significantly better than a random prediction (p < 0.001;
ne tailed) for each tree species (Table 3). The model per-
ormance using bioclimatic variables produced higher AUC
a Balance threshold was based on training omission rate and frac-
tion of predicted area.

values when compared with species distribution models gen-
erated using RS-data sets for all tree species. However, the
reductions in the omission and commission rates for RS-
models were at a level of only 0.02%. The increase in AUC
achieved by combining RS- and Climate data sets (i.e. RS
and Climate-models) for C. brasiliensis and V. surinamensis
was, again, not significantly higher than the AUC obtained
for Climate- and RS-models—i.e. a 0.002–0.15% improvement
when environmental features were combined (Table 3). In
addition, for C. guianensis, the combined RS and climate data
layers did not perform as strongly as individual data layers and
produced significantly lower AUC when RS and climate layers
were used independently. We attributed this result to the fact
that the combined data sets had a large number of correlated
and redundant data layers that had an adverse impact on the
performance of Maxent.

The Maxent predictions by comparing the balance thresh-
old and the fraction of predicted area provided addition
information on the performance of the models. The balance
threshold minimizes a combination of training omission rate,
cumulative threshold and the fraction of predicted area. A
lower balance threshold refers to an overall better perfor-
mance. For all tree species, the models’ performances were
significantly higher (p < 0.001) for RS-data sets. In contrast to
the similarity of AUC values between models, values of the
fraction of the predicted area were notably higher (sometimes
34% and 24% higher for, respectively, C. brasiliensis and C.
guianensis; see Table 3) for RS-data sets when compared with
Climate and RS and Climate data sets. For C. brasiliensis and C.
guianensis, the balance threshold showed higher performance
for RS-models (1.5 and 0.5, respectively) than for the climate
variables (2.0 and 4.5, respectively). However, the combined
RS and Climate data layers showed an improved result for V.
surinamensis.

Following the Maxent evaluation, an independent test on
phical distribution models of high-value timber trees in the Amazon
odel.2007.09.024

model performance was undertaken. This involved extract-
ing the predictive probabilities of species’ occurrence from
the pixels of point localities and estimated the percentage of
the area where probabilities were higher of certain thresholds

dx.doi.org/10.1016/j.ecolmodel.2007.09.024


ARTICLE INECOMOD-4946; No. of Pages 15

8 e c o l o g i c a l m o d e l l i n g

Table 4 – Species’ occurrence probabilities (%) on areas
where the species have been observed

RS Climate RS and Climate

Calophyllum brasiliensis
Average 56.05 55.78 55.40
>30 74.68 76.83 83.54
>40 69.62 67.07 68.35
>50 60.76 57.32 55.70
>75 35.44 26.83 32.91

Carapa guianensis
Average 55.56 55.44 52.72
>30 75.68 82.43 77.03
>40 67.57 70.27 64.86
>50 60.81 55.41 56.76
>75 25.68 21.62 21.62

Virola surinamensis
Average 54.03 54.78 53.06
>30 74.38 71.90 76.03

>40 68.60 66.12 66.94
>50 60.33 56.20 58.68
>75 27.27 25.62 24.80

(e.g. 30, 40, 50, and 75%). These results are summarized in
Table 4. For all three species, the RS-models performed bet-
ter than both climate- and combined RS and climate-models,
with 60% of point localities being found on the 50% threshold.
As expected, the predictive probabilities decreased for high
probability thresholds, suggesting that a smaller number of
point localities were predicted by the model in higher proba-
bility classes. It appears that 50% was a reasonable threshold
for evaluating model predictions for each tree species because
the values in Maxent output are representative of a cumula-
tive probability rather than a pure probability of occurrence
(Phillips et al., 2006). This threshold was used to represent the
spatial distribution of Maxent predictions.

4.2. Data layers reduction

The jackknife test results from Maxent for the model runs
associated with RS and climate data were compared to exam-
ine the importance of environmental variables to generate
the predictive species distribution models. The jackknife test
provides gain values for two scenarios: (1) identifying the
environmental variable with the highest gain when used in
isolation to predict the distribution; (2) the environmental
variable that decreases the gain when it is omitted. These
two gain values highlight the most important environmental
variables necessary for model development and allow their
identification with no independent information.

Four precipitation variables (i.e. ‘annual precipitation’, ‘pre-
cipitation of the wettest month’, ‘precipitation of the wettest
quarter’, ‘precipitation of coldest quarter’) had the highest
gain for C. brasiliensis geographical distribution. This suggests
that the annual precipitation of wettest and coldest periods
were the main climatic variables for C. brasiliensis geographi-
cal distribution. Temperature seasonality, to some extent, also
Please cite this article in press as: Prates-Clark, C.C., et al., Predicting geogr
Basin using remotely sensed data, Ecol. Model. (2007), doi:10.1016/j.ecolm

contributed to the geographical range of this tree species.
However, it was not one of the top contenders. Remote sensing
data layers had a more uniform gain distribution among input
variables. Leaf area index and its seasonality (LAI-4), canopy
 PRESS
x x x ( 2 0 0 7 ) xxx–xxx

moisture and architecture (QSCAT), and percent of tree cover
(VCF) data were among the most important variables (Table 2).

The variables contributing to the distribution of C. guia-
nensis (Table 2) were very different. Among climate variables,
jackknife tests showed temperature variables (‘temperature
annual range’, ‘mean diurnal range’, ‘minimum temperature
of coldest month’, ‘temperature seasonality’) having the high-
est gain. Both diurnal and seasonal magnitude and ranges of
temperature were important in identifying the species loca-
tion. Precipitation layers had little impact on the Maxent
results. Among remote sensing data, elevation (from SRTM)
was the most important layer, followed by QSCAT, maximum
NDVI, and LAI of driest quarter.

Both climate (‘temperature annual range’, ‘mean diur-
nal range’, ‘minimum temperature of the coldest month’,
‘temperature seasonality’) and remote sensing data layers
mean elevation (SRTM-HGT), canopy moisture and roughness
(QSCAT), LAI during the dry months (LAI-4) had a more uni-
form gain distribution among environmental variables for V.
surinamensis. Diurnal and seasonal range temperature and the
annual and wettest-month’s precipitation showed the highest
gain.

Following these analyses, model performances were com-
pared when the potential predictor variables to generate
models using RS and climate variables were used as input
data, i.e. using a reduced number of input variables. The
results of model simulations with reduced input data layers
(i.e. the potential predictor variables selected to generated
models using RS, Climate and RS and Climate data sets) are
presented in Supplementary data. For all three species, com-
parison of AUC values from Table 3 (results from the entire
data sets) and Supplementary data showed models degra-
dation (lower AUC values) as less important variables were
removed.

4.3. Validating spatial distributions

Validating Maxent prediction of species’ occurrence requires
an independent data set (Phillips et al., 2006). This valida-
tion was performed by selecting a percentage of the species
point localities for training data and the remaining point local-
ities for testing model performances. Three sample sizes of
15, 25 and 45% of the original point localities (selected ran-
domly by Maxent) were used, and the results are presented in
Supplementary data. While the test sampling size changed,
the ranking of different suites of input data remained sta-
ble according to the fractional of predicted area, but varied
according to the sensitivity and specificity (AUC). Also, there
was a trend for the three species with respect to the most
adequate test sampling size. The one-tailed binomial prob-
ability test (based on the omission of test points and the
fraction of predicted area) was significantly higher for the
testing sample of 25% of data points. At the 25% level, the
fraction of predicted area covered was much higher than
other levels of test sampling (i.e. 5, 10, and higher than 35%),
which, often, was not even statistically significant. In addi-
aphical distribution models of high-value timber trees in the Amazon
odel.2007.09.024

tion, it can be noticed that the test sample size of 25% of
the point localities produced the best omission and com-
mission rates (Supplementary data) which is close to values
obtained when all training data sets were used to generate

dx.doi.org/10.1016/j.ecolmodel.2007.09.024
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he species distribution models (Table 3). This implies that for
ll tree species, overall model performance was significantly
igher (p < 0.001; one tailed) with test points being classified as

presence’ more than expected by random, given the propor-
ion of pixels predicted ‘present’ by the species distribution

odel.
Although the models’ performance for testing size of 25%

ere similar for all tree species, the fraction of predicted
rea was much lower at that testing level for C. guianensis
Supplementary data). This probably was due to the small
umber of point localities (64 points) used to model this tree
pecies’ occurrence. According to Phillips et al. (2006), an opti-
al species distribution model would incorporate training

ata from all available records of the species (e.g. models per-
ormance presented in Table 2) and, when the number of point
ocalities is insufficient, it may reduce the species distribution

odels’ performance.

.4. Species distribution maps

odel predictions for the three species were mapped in terms
f the cumulative probability over the region of study at a 5 km
patial resolution. The estimated probabilities of occurrence
ere produced as continuous predictions with values ranging

rom 0 to 100. To generate the maps, six colours were used to
llustrate the strength of each individual map pixel. One colour
or probability greater than 50 was used to indicate the most
Please cite this article in press as: Prates-Clark, C.C., et al., Predicting geogra
Basin using remotely sensed data, Ecol. Model. (2007), doi:10.1016/j.ecolm

eliable range of species’ occurrence. However, the colours of
ower probabilities assisted to compare maps with different
nput variables. For a biological interpretation of results, we
ocused primarily on areas that had a probability of greater

ig. 2 – The predictive potential geographical maps for Calophyllu
nd (c) ‘RS and Climate’.
 PRESS
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than 50, and assumed that the lower probability areas were
less significant in defining the ecological niche of these tree
species.

Only the broad patterns of C. brasiliensis, C. guianensis
and V. surinamensis could reliably be extracted from the
Climate-driven models (i.e. the species distribution models
generated using the 19 bioclimatic layers). Bioclimatic vari-
ables have a very coarse spatial resolution as they were
produced from available distribution of precipitation and rain-
fall data over the region and interpolated using SRTM elevation
data. Regardless of the high resolution of SRTM data, the inter-
polated climate variables are limited by their original spatial
resolution. Using a combination of bioclimatic and RS-data
sets to generate species distribution models (RS and Climate-
models) produced species distribution maps that were even
more difficult to interpret in biological terms. The spatial
resolution of these distribution maps was degraded and land-
scape features were again neglected. The approach based on
the usage of RS-data sets to generate the species distribu-
tion models produced species distribution maps containing
more detailed information about the landscape and vegetation
patterns in the Amazon Basin, generally without sharp differ-
ences between adjacent areas due to the smoothly varying
fine-scale of environmental variables extracted from RS-data.
The natural resolution of these data layers varied from 100 m
to 1 km and, hence, they were more suitable for capturing the
regional (and sometimes local) scale variability of the land-
phical distribution models of high-value timber trees in the Amazon
odel.2007.09.024

scape, even at the 5 km spatial resolution maps generated by
the models.

The three species distribution maps for C. brasiliensis,
C. guianensis and V. surinamensis are presented in Figs. 2–4,

m brasiliensis based on: (a) ‘Climate-model’, (b) ‘RS-model’

dx.doi.org/10.1016/j.ecolmodel.2007.09.024
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Fig. 3 – The predictive potential geographical maps for Carapa guianensis based on: (a) ‘Climate-model’, (b) ‘RS-model’ and
(c) ‘RS and Climate’.

Fig. 4 – The predictive potential geographical maps for Virola surinamensis based on: (a) ‘Climate-model’, (b) ‘RS-model’ and
(c) ‘RS and Climate’.

dx.doi.org/10.1016/j.ecolmodel.2007.09.024
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espectively. Each figure included three panels for Climate, RS
nd combined RS and Climate species distribution maps.

. Discussion

he species distribution models generated using ‘Climate’,
RS’ and, ‘RS and Climate’ variables produced different results,

ith the RS-models showing higher model performance to
redict species’ occurrence across the landscape as well as

ndicating the set of environmental variables that summarize
ach tree species ecological niche.

For each species (except C. brasiliensis), the results obtained
or omission and commission rates were lower for RS-models.
he potential distribution model for C. brasiliensis had a rela-

ively lower statistical power (Table 3) compared to the other
wo tree species’ models. Furthermore, the distribution map
or C. brasiliensis failed to cover a possible true geographical
istribution. This created some overprediction—e.g. in some
eforested areas in the Brazilian Amazon both of which are
reas where this tree species is highly unlikely to be present.
he high rates of commission error (overprediction) for C.
rasiliensis may be explained by inadequate sampling (Karl
t al., 2000, 2002). Sample data points are clearly an integral
art of species distribution models. However, inherent error
argins of data might occur since the exact location of the col-

ecting site is not very precise. In addition, widespread species
uch as C. brasiliensis are often associated with intrinsic and
xtrinsic commission error due to the relatively moderate
umber of point localities (for a widespread species) used to
evelop the species distribution model (Peterson and Viglais,
001; Anderson and Martı́nez-Meyer, 2004). One possible way
f avoiding some of the species distribution model’s dis-
repancies would be to use a larger number of data points.
lthough the difference between models was relatively small
hen compared with the area under the Receiver Operating
haracteristic curves (Table 3), RS-models showed a higher
erformance than Climate- and RS and Climate-models when
valuating values of probabilities of species’ occurrence in
oint localities which the species was found (Table 4). The
S-models retained a high precision of over 60% in correctly
redicting the species’ occurrence for all three species. It was
oticeable that that the addition of bioclimatic layers did not

ncrease the models’ accuracy. Indeed, the species distribu-
ion maps based on RS and Climate-models were even more
ifficult to interpret in biological terms. This implies that data
ets at a very coarse spatial resolution (e.g. bioclimatic sur-
aces) should not be analysed (or even processed) together
ith RS-data sets (at finer resolution) in the same model. For C.

uianensis, the model developed from the combined RS and cli-
ate layers removed some of the detailed landscape features

btained by the RS-model. The combined model suggested
hat for certain species such as C. guianensis, the combina-
ion of environmental variables at different spatial resolutions

ight cause the loss of important features that describe the
Please cite this article in press as: Prates-Clark, C.C., et al., Predicting geogra
Basin using remotely sensed data, Ecol. Model. (2007), doi:10.1016/j.ecolm

cological niche of this species. For this reason, bioclimatic
ariables are only important for general characteristics and
hould be treated with caution when employed in distribution
odels.
 PRESS
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It is also important to point out that remote sensing data
may be correlated with climate variables. For example, the
RS-model is interrelated with variables used to develop the
Climate-model. In the context of vegetation stress, Maximum
Temperature or Potential Evapotranspiration (PET) is an indi-
cation of a favourable environment for photosynthesis since
photosynthesis, of course, requires heat and light. Likewise,
due to the minimum amount of precipitation, during dry
years, the extended length of the dry season and amount
of radiation, there will be less evapotranspiration in tropical
rainforests (like those in the Amazon Basin; Shabanov et al.,
2002). This, in turn, may generate a decrease in photosyn-
thesis which can be captured in the thermal bands used to
generate LAI and NDVI metrics. Also, since moisture condi-
tion may restrict plant growth and vegetation phenology, LAI
and NDVI metrics may show temporal variations related to
seasonal changes of moisture conditions (Myneni et al., 1995,
1997). Furthermore, a change in vegetation density affects the
vegetation surface roughness, and vegetation surface rough-
ness also depends on the LAI (Chase et al., 1996; Myneni et al.,
1998).

Knowledge of meso-scale (climate) patterns is also impor-
tant when attempting to model species’ geographical ranges
since climate parameters have an impact on plant and ani-
mal growth (Hubbell et al., 1999; O’Brien et al., 2000; Pausas
et al., 2003). In our analysis, an interdependence link between
environmental variables extracted from RS-data sets and cli-
mate variables was also evident. The potential geographical
distribution map for C. brasiliensis based on the RS-model
(Fig. 2b) shows some overlap with the distribution map gen-
erated using the Climate-model. However, the distribution
map based on the RS-model incorporates entirely new areas
(e.g. forest areas in Colombia and Ecuador) and excluded oth-
ers areas such as deforested lands in North Para (Brazilian
Amazon) and open savannas in Venezuela. For V. surinamen-
sis, ‘temperature seasonality’ (Climate-model), LAI-5, LAI-7
and QSCAT-H (RS-model) were the key predictor variables
for generating the models. Environmental variables (such as
LAI and NDVI) have been recognized to be strongly con-
ditioned by the behaviour of precipitation, air temperature
and daily radiation the observed area (Shabanov et al., 2002).
These metrics, which are sensitive to the length of dry sea-
son, assume that the potential of species’ occurrence may
decline with the increasing harshness of environmental con-
ditions. This is deemed by researchers to be important,
particularly for predicting tree species ranges. For example,
fewer species should physiologically be equipped to toler-
ate annual (i.e. short-term) variations in climate conditions
(Fraser and Currie, 1996). Although V. surinamensis is found in
shade (Lopes et al., 2004) and forest gaps (Whitmore, 1988),
Howe (1990) has shown that this tree species is vulnera-
ble to the seasonal droughts occurring in forest gaps. Thus,
deforested areas or seasonal vegetated regions were success-
fully captured by LAI metrics and consequently excluded
from the distribution map presented in Fig. 4b for V. surina-
mensis. This finding is supported by other studies showing
phical distribution models of high-value timber trees in the Amazon
odel.2007.09.024

that tropical drought deciduous woodlands can be strati-
fied from tropical humid forests, for example, by using LAI
and NDVI brightness metrics (Hansen et al., 2000; DeFries et
al., 2002).

dx.doi.org/10.1016/j.ecolmodel.2007.09.024
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Although, RS-data sets and climate variables are co-
occurring and mutually dependent, they distinctly represent
surface characteristic of habitats. The distribution models for
C. brasiliensis, C. guianensis and V. surinamensis showed that
climate variables are an inadequate or incomplete means
of accurately describing the ecological niche of these tree
species or portraying these species’ geographical distribution.
For example, the potential distribution map derived from bio-
climatic layers for C. brasiliensis (Fig. 2a) predicted areas of
high precipitation and shorter dry season in lowlands areas
as potential habitat while several areas in Western and North-
western regions were wrongly predicted as having a lower
probability of species’ occurrence. To a large extent, these pat-
terns were due to artifacts in the bioclimatic data and, more
specifically, as a result of the interpolation with the elevation
data. Conversely, an interesting feature of the RS-model is the
accurate prediction of Atlantic Coastal forest of Brazil as a
potential habitat of C. guianensis. This species is known to be
present in areas from the Atlantic and Pacific coasts of Cen-
tral America, Guyanas, and the Atlantic coastal forest of Brazil
(de Granville, 1988; Hall et al., 1994; Callado et al., 2001). Fur-
thermore, the distribution map using RS data also reflected
predictions with an equal balance between omission and
commission errors avoiding areas unlikely for this species’
occurrence, such as deforested areas in the Brazilian Amazon,
drier areas in the middle-Northeast of Brazil, and open savan-
nas in Venezuela. Therefore, when focusing on determinants
or potential predictor variables to model species’ occurrence
by quantifying biophysical attributes associated with species
ecological niche, data extracted from remote sensed data at a
finer spatial resolution and in temporal basis represents the
most convenient and reliable source of data.

The ecological niche for C. brasiliensis, C. guianensis and V.
surinamensis varied between the three tree species in spite
of broadly overlapping geographic distributions. However,
densely vegetated forests as reported by high leaf area (even
during the dry months), vegetation greenness, branch ori-
entation and canopy structure and high moisture (possibly
because they contain a larger number of emergent trees)
were identified as being necessary for the occurrence of
these three tree species across the Amazon Basin. Alter-
natively, deforested or seasonal vegetated forests identified
by mean and seasonality LAI and NDVI metrics during the
dry season were excluded from the distribution maps of
these tree species. This has major implications for the occur-
rence of these species and other flora and fauna correlated,
especially in those areas where deforestation mainly for selec-
tive logging continues at high rates. When these forests are
removed, the complex forest system is destroyed and, in
cleared areas, the physical environment is very different from
that of the original forests. In particular, the ground is exposed
to greater extremes of rainfall, temperature and solar radi-
ation. Soil erosion and the humidity within these areas are
also significantly different. The leaf litter dries out rapidly
and the associated symbiotic mycorrizae are lost, which lim-
its the ability of trees to extract nutrients from the soil.
Please cite this article in press as: Prates-Clark, C.C., et al., Predicting geogr
Basin using remotely sensed data, Ecol. Model. (2007), doi:10.1016/j.ecolm

Conservation of these tree habitats should become a high
priority in the Amazon Basin since tree species and the Ama-
zon ecosystem as a whole are entirely depended on one
another.
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Although RS-data sets have been shown to be a use-
ful operational tool for predicting habitat suitability, for C.
brasiliensis, C. guianensis and V. surinamensis, an inherent limi-
tation associated with predicting species distribution models
based on species suitable habitat relates to how the differ-
ence between life zone (i.e. the potential predicted range)
and the actual species’ distribution can be explained (Soberón
and Peterson, 2005). The selection of an appropriate method
to model species’ geographical ranges should be based on
statistical considerations, techniques for testing accuracy of
the model and plausible biological agreement of the models.
Sometimes the species’ geographical range is greatly influ-
enced by historic processes such as dry periods during the
Pleistocene or the uplift of the Andes (de Oliveira and Mori,
1999). Despite climate change, there is evidence to suggest
that the Amazonian rainforest has retracted to cover areas
smaller than today and has then expanded when conditions
became more favourable (Hays et al., 1976; Haffer, 1969; Gentry,
1982a,b; Haffer and Prance, 2001). The repeated expansion and
contraction of the rainforest, where large continuous sections
of forests became fragmented and isolated for long periods
and then reconnected, produced local differentiation in cli-
mate and biogeography (Prance, 1982; Haffer, 1993). These
events could explain why a species does not grow in an area
predicted by the predictive species distribution model. For
example, species of the genus Cariniana (Brazilian nut fam-
ily) are not found in the North Eastern Amazon where the
conditions are favourable for their occurrence (personal com-
munication with Dr. Scott Mori). Conditions for forest growth
also have a strong local component. For example, despite the
low quality of much Amazonian soil (Sanchez and Buol, 1975;
Sanchez et al., 1982; Malhi et al., 2004), vigorous tree diver-
sity grows in the Amazon Basin (de Oliveira and Mori, 1999)
and is attributed to the rapid cycling of nutrients (Connell and
Slatyer, 1977; Brown and Lugo, 1990), a diverse and abundant
population of decomposers (Janos, 1980; Eggleton et al., 1998)
and high nutrients stocks on its vegetation (Stark and Jordan,
1978).

Finally, the models developed to potentially predict tree
species’ occurrence on this paper are static, i.e. are based on
biophysical properties extracted from RS data at the time that
satellite imagery was obtained across the Earth surface of the
study area. Nevertheless, these models carry important infor-
mation: the geographical distributions of high-value timber
trees were mapped and several environmental properties that
define the ecological niche of these species were determined
from data acquired from remotely sensed data. Furthermore,
traditional methods such as data collection using ground sur-
veys are impractical for large spatial analysis and require an
inordinate amount of time. RS-data sets can be updated on a
regular basis for environmental monitoring—a practice which
is becoming increasingly important in tropical areas because
of rapid, human-induced changes.

6. Conclusion
aphical distribution models of high-value timber trees in the Amazon
odel.2007.09.024

There are many possible approaches researchers can
take when attempting to determine species’ distribution
ranges—e.g. habitat characteristics and estimates of species’

dx.doi.org/10.1016/j.ecolmodel.2007.09.024
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hysiological tolerances. However, there is, as yet, no compar-
tive study of the use of remote sensed data and bioclimatic
urfaces to modelling species’ occurrence. Certainly, the inter-
retation of data extracted from remote sensing offers a tool
or the temporal and spatial assessment of variables (such as
ercentage of tree cover, vegetation greenness, canopy mois-
ure and roughness) to map, monitor and understand the
ynamics of species’ occurrence and factors that have an

mpact on their distribution.
In our study, environmental properties extracted from RS-

ata sets made a significant contribution in mapping habitat
uitability for high-value timber tree species occurring in the
mazon Basin. The methodology we used may also be useful

n studies of other plant or animal species as well as other
cosystems. We have shown that relationships exist between
he ecological niche of the three tree species studied and envi-
onmental variables extracted from RS-data sets. We have
lso demonstrated that the usefulness of remote sensed data
o predict tree species distributions is limited due to several
ther processes that may determine or explain the existence
f a particular tree species. Nonetheless, our approach pro-
ides species distribution maps that can be used in post hoc
nalysis to maximize the agreement between observed and
redicted species distributions. These analyses provide a mea-
ure of how environmental change such as land degradation,
orest loss and forest fragmentation may compromise the
ccurrence of these species. In sum, our approach, we believe,
rovides a step forward in quantifying the biophysical proper-
ies underlying the interactions between species’ occurrence
nd its habitat.
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