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Abstract

A wide variety of models have illustrated the potential importance of terrestrial biological
feedbacks on climate and climate change; yet our ability to make precise predictions is
severely limited, due to a high degree of uncertainty. In this paper, after briefly reviewing
current models, we present challenges for new terrestrial models and introduce a simple
mechanistic approach that may complement existing approaches.
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Introduction

Global climate changes in the past have had dramatic
impacts on the land surface. The geological record docu-
ments the advance and retreat of glaciers and correspond-
ing changes in sea level (Folland et al. 1990). The fossil
pollen record illustrates large changes in the geographical
distribution of vegetation (Bernabo & Webb 1977). What
is less certain, but of little doubt, is that changes to the
land surface produce large-scale feedbacks on climate.

Our understanding of the potential importance of
terrestrial biological feedbacks on climate comes largely
from general circulation models (GCMs). In this regard,
atmospheric scientists have made great progress. Includ-
ing biological details of the land surface in GCMs
improves palaeo (Otto-Bliesner & Upchurch 1997) and
current climate predictions (Pielke et al. 1997; Fennessy
& Xue 1997). In addition, several large-scale experiments
have shown that the atmospheric models and the way
they incorporate details from the land surface are on
track (e.g. FIFE and HAPEX).

However, because the biophysical and biogeochemical
feedbacks on climate depend on the properties of local
vegetation and soil, which in turn respond to climate,
predicting these feedbacks depends critically on pre-
dicting relevant land surface dynamics. To this end,
progress is lagging. Our best global-scale biological
models still have serious problems of averaging and
scaling, and omit important influences. The biological
challenge is both exciting and daunting. The biological
feedbacks on climate are potentially large, but we suffer
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from an inability to predict relevant long-term community
and ecosystem dynamics from models based on physio-
logical principles alone.

This paper is about models for the study of terrestrial
biological feedbacks on climate and climate change. We
begin by describing briefly two general lessons from the
available models. The first is that the potential feedbacks
from the land surface on climate are large. However, the
second is that the uncertainties in the magnitude and
direction of those feedbacks are also large. We then
present challenges for future models. The issues that we
discuss are widely understood in the global change
community. Our purpose here is to provide a summary.
We end with an introduction to a nascent approach
representing work in progress. This paper is not meant
as a review or critique of available models, nor as a
complete description of a new approach. While relevant
models have produced many accomplishments, there are
important challenges ahead. This paper is intended as
motivation and perspective for future models that will
confront these challenges.

Lessons from available terrestrial models

Terrestrial models that are relevant to feedbacks on
climate have been reviewed previously (Heal et al. 1993;
Malanson 1993). In Heal et al. (1993), the models are
grouped into seven types: leaf, crop, biogeochemical,
stand, landscape, biophysical, and biome. Malanson
(1993) groups the models into three types: transfer func-
tions, stand models, and physiological models.
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Type Examples

Table 1 Types and examples of terrestrial
models for global change studies. The

1. Biogeochemical Miami (Lieth, 1972)
TEM (Raich et al., 1991; Melillo et al., 1993)
CENTURY (Parton et al., 1988)
GTEC (King et al., 1997)
CASA (Potter et al., 1993)
II. Biophysical SiB (Sellers et al., 1986)
BATS (Dickinson et al., 1993)
LSM (Bonan, 1994)
LSX (Pollard & Tjompson, 1995)
III. Biogeographic Holdridge (Holdridge, 1967)

upper portion of the table lists three
basic types of models and gives examples
of each type. The lower portion of the
table gives examples of models that are
hybrids of two or three of the basic types.

Biome (Prentice et al., 1992; Haxeltine et al., 1996; Haxeltine &

Prentice, 1996)
MAPSS (Neilson, 1995)

DOLY (Woodward, 1987; Woodward et al., 1995)
I+1I LSM + carbon (Bonan, 1995)
I + 111 BATS + Holdridge (Henderson-Sellers & McGuffie, 1995)
I+ 11 Holdridge + carbon (Smith et al., 1992)
Biomel + carbon (Prentice & Sykes, 1995)
I+ 11+ I IBIS (Foley et al, 1996)

Alternatively, the models can be grouped based on
their objectives. Biogeochemical models are focused prim-
arily on the air-land balance of carbon and other chemical
constituents. Biophysical models are focused on direct
physical interactions between the atmosphere and land
surface. Biogeographical models are concerned with pre-
dicting the distribution of vegetation. Because the total
terrestrial response and feedback includes all three of
these objectives, models have also been developed with
a combination of these objectives. Table 1 provides an
example of the use of this classification.

Available terrestrial models have been very successful
at illustrating the potential for biological feedbacks on
climate and climate change. These models consistently
show that biological feedbacks are large, but there is
considerable uncertainty.

Biological feedbacks on climate are potentially large

Terrestrial models consistently show that biological feed-
backs on climate are potentially large. This result has
been demonstrated in numerous studies, and has helped
to fuel enormous interest in the study of biological
feedbacks on climate and climate change. We briefly
summarize a few examples.

In a coupled biophysical-climate model, Shukla et al.
(Shukla et al. 1990) simulated the deforestation of the
Amazon and compared the results to control runs with
an intact Amazon forest. The result was a decrease in
evapotranspiration and precipitation over the region. In
addition, there were corresponding increases in runoff,
sensible heat flux, and average annual temperature over

the region. The average annual temperature increase
ranged from 0° to 3° at the surface over the Amazon.

In a second extreme scenario with a coupled biophysical
model, Bonan ef al. (1992) found that the albedo difference
between boreal vegetation and bare ground or tundra
had a large effect on surface temperatures. Increased land
surface albedo between January and April because of
exposed snow caused colder temperatures over much
of the northern hemisphere compared to the control
simulations with an intact forest. Zonally averaged tem-
peratures decreased as much as 12° in April and as much
as 5° in July. The temperature change extended as far
south as 10° North latitude, well outside of the per-
turbed area.

The list of studies that indicate potentially large
biological feedbacks on climate is long and includes
less extreme scenarios and both biogeographic and
biogeochemical effects. For example, Henderson-Sellers
& McGuffie (1995) illustrated, using a coupled biogeog-
raphy and climate model, that changes in the distribu-
tion of vegetation during climate change can cause
important biophysical feedbacks on climate. Using
equilibrium biogeochemical assumptions, Smith et al.
(1992) estimated that in response to a doubled CO,
climate, terrestrial carbon storage could increase from
8.5 to 180.5 GtC depending on the climate model used.
In a similar study, Prentice and Sykes estimated that
terrestrial carbon storage will change from — 11 to + 103
GtC (Prentice & Sykes 1995). By comparison, the
atmosphere currently contains roughly 150 GtC more
now than in did in preindustrial times (Siegenthaler &
Sarmiento 1993).

© 1998 Blackwell Science Ltd., Global Change Biology, 4, 581-590
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The uncertainties in the magnitude of biological
feedbacks, while poorly known, are large

A second consistent result from the available terrestrial
models is that the uncertainties in the magnitude of
biological feedbacks on climate, while poorly known, are
also large. The degree of uncertainty is largely unknown
because quantifying it in model predictions has not
been a significant priority to date. Most studies report
predictions without any quantitative estimate of signifi-
cance or confidence. Others report a range of predictions,
such as in the studies of Smith et al. (1992) and Prentice
& Sykes (1995) cited above. These ranges are often
enormous and hard to evaluate. Moreover, in the case of
these latter two examples, the ranges are generated solely
from the use of different climate models and do not
include uncertainty in the biological models.

One way we can get an indication of the level of
uncertainty in terrestrial model predictions is by compar-
ing the predictions of different models in carefully organ-
ized model intercomparison studies, such as an
intercomparison of biogeographical and biogeochemical
models that are forced by climate models (VEMAP Mem-
bers 1995). In this study, a set of biogeochemical and
biogeographic models were forced, singly and coupled
together, under current CO, and climate conditions and
the results were compared with those under doubled CO,
and associated climate conditions. The model predictions
diverged substantially when run under the altered condi-
tions. For example, over the range of climate models of
doubled CO, conditions, the range of coupled terrestrial
model (coupled biogeographical and biogeochemical
model) predictions for continental U.S. net primary pro-
duction (NPP) is from a negligible change to an increase
by 40%. Total carbon storage could increase by 32% or
decrease by 39%. The range of model predictions was
nearly as large using any single climate model. Clearly,
the biological responses (and corresponding biological
feedbacks) predicted by these models are highly
uncertain.

Challenges for new models

Take ‘fitting” out of the closet

While model predictions diverged under altered climates
in the VEMAP model intercomparison study cited above,
there was close agreement under current climate and
CO, conditions. Under current conditions, modelled U.S.
NPP ranged from 3.1 to 3.9 PgC y~! and total carbon
storage estimates ranged from 109 to 125 PgC. The
agreement of the models under current climate conditions
and divergence under predicted future conditions is a

© 1998 Blackwell Science Ltd., Global Change Biology, 4, 581-590

strong indication that they are fit to current patterns, but
lack consensus on what is responsible for those patterns.

That the models differ on the mechanisms responsible
for the patterns is a point of fact (VEMAP Members
1995). For example among the biogeochemical models,
BIOME-BCG relies primarily on the control of water on
plant carbon uptake and storage, whereas TEM and
CENTURY rely primarily on the control of nitrogen
availability. The biogeographical models all use similar
thermal and water balance controls to limit the distribu-
tion of vegetation types, but differ markedly in their
representations of potential evapotranspiration and direct
CO, effects.

Model fitting is controversial. While fitting (and more
generally parameter estimation) can be a valuable part of
an overall scheme of model development and evaluation
(Edwards 1972), without careful statistical treatment, it
can be difficult to determine the extent to which the
performance of a model depends on its structure and
known constants, as opposed to simply the fitting of
even a few parameters to observed patterns. In addition,
fit parameter values are not always easily reconcilable
with independent field data. Understanding where para-
meter values (and for that matter functional forms) come
from and how well they are known, together with a
fuller discussion of model fitting and model evaluation,
will help us determine the degree of confidence to place
in a given model.

Degree and equitability of detail

One trend in the development of coupled terrestrial
models is towards increased physiological detail (Sellers
et al. 1997). Yet, increasing detail at small scales is no
assurance of improved prediction or explanation at larger
scales (Levin 1992). While basing terrestrial models on
plant physiology makes sense because physiological
responses of plants are directly affected by climate and
often have direct physical feedbacks on climate (e.g.
evapotranspiration), basing these models on detailed
physiology presents difficult challenges. To achieve con-
fidence, we must find ways to scale from the physiological
performance of cells or leaves to the long-term perform-
ance of whole plants and plant populations and, more
difficult, to long-term community and ecosystem
dynamics. (Levin 1992; Ehleringer & Field 1993; Jarvis
1995; Levin et al. 1997).

One important source of uncertainty in scaling up is
plant resource allocation. We still do not have a sufficient
understanding of plant resource allocation to model
long-term plant performance, yet allocation by plants
influences both plant performance and biophysical prop-
erties relevant to climate. For example, if plants allocate
resources preferentially to roots, then they may become
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better competitors for nutrients and water at the expense
of potentially increased photosynthetic capacity (e.g. leaf
area). Alternatively, if plants allocate preferentially to
leaves, then they may increase their photosynthetic capa-
city at the expense of increased water stress and decreased
soil water and nutrient acquisition. What makes allocation
difficult is that individual plants can be highly plastic,
and different species can have different basic allocation
strategies (Mooney 1972; Bloom et al. 1985; Tilman 1988).
Plant allocation is a fundamentally nonlinear process,
and nonlinearities can amplify error in models
(Deutschman 1996).

Allocation is just one source of uncertainty in scaling
up. Population and community effects can occur on the
same order as the physiological effects already emphas-
ized in current models. Bolker et al. (1995) provide
an example of the potential importance of community
dynamics to properties of ecosystems. A version of the
individual-based forest simulator SORTIE (Pacala et al.
1993; Pacala et al. 1996) with a single homogeneous
average tree species had very different predictions under
enhanced CO, conditions than a version of SORTIE with
the observed biodiversity, even on decadal time scales
and even for such quantities as total above-ground carbon
storage. In particular, model communities with higher
biodiversity showed a roughly 30% increase in total basal
area over time scales of 50-100 years.

Recent empirical studies also illustrate large effects of
biodiversity on the functioning of systems. Biodiversity
may stabilize ecosystems (Naeem et al. 1994; Tilman &
Downing 1994), lead to higher rates of NPP and greater
resource depletion (Tilman et al. 1996), and dramatically
affect the consequences of nitrogen addition to an eco-
system (Wedin & Tilman 1996). For example, in an
experimental grassland communities with more species
had greater total plant cover (higher integrated NPP) and
less nitrogen available in the soil (Tilman ef al. 1996).

Finally, even if we had a way to scale up formally
from physiology through plant allocation and community
dynamics to derive solutions for “potential” vegetation as
a function of environmental variables, we would still be
missing the consequences of disturbance and land-use.
These consequences are dramatic, and both disturbance
and land use are on the rise (Vitousek et al. 1986; Skole
& Tucker 1993; Vitousek et al. 1997; Noble & Dirzo
1997; Dale 1997). Even a small grid cell is typically
heterogeneous at smaller scales for a variety of reasons,
of which disturbance and land use are increasingly
important.

Early successional sites tend to accumulate above-
ground carbon relatively quickly compared to late succes-
sional sites (Houghton et al. 1983), because plants in early
successional sites are rapidly growing. Disturbance and
land use also interact with processes at smaller scales,

potentially altering the dynamics and outcome of inter-
specific competition between plants. Disturbance can also
affect community and ecosystem responses to climate
change, when, for example, early and late successional
species respond differentially to the change (Bolker ef al.
1995). Converted land that is the product of human land
use can have very different ecosystem properties and
dynamics than the natural system it replaces. Clearly,
prediction and characterization of land use and disturb-
ance represent crucial areas of research.

While coupled global terrestrial models seem to be
progressing with ever more detailed plant physiology,
there are many important effects at larger scales that are
far removed from plant physiology.

Search for macroscopic descriptions

Because there are many sources of uncertainty in our
understanding of longterm land surface dynamics, and
because we cannot yet accurately scale all of the way up,
there may be a tendency to add missing effects to the
models of detailed physiology that are already available
and coupled to climate models. Yet resulting models can
become prohibitively complicated and hold the capacity
to amplify errors in multiple directions. It might be
tempting to combine the ‘best’ biogeography, biogeoch-
emistry, and biophysical models; but any resulting model
still would lack several important influences such as
biodiversity, disturbance and land use, succession, and
limited plant dispersal. Given the complexity of the
existing component models, let alone the potentially
needed additions, is there any hope that we would
understand these models or that they would make statist-
ically useful predictions? Are we at an impasse?

One way to progress is by formulating models at
intermediate scales of biological detail. In an effort to
keep the models simple, important processes at smaller
scales could be included through relatively simple expres-
sions that are derived from a detailed understanding of
mechanisms operating at those scales. Plant community
ecology, for example, is largely proceeding from the scale
of a phenomenological understanding of whole plant
performance to predict the dynamics of plant communit-
ies over long time scales (Shugart, 1984; Pacala et al. 1996).
The macroscopic properties of gases may be derived from
the ensemble behaviour of interacting particle systems.

One possible approach

Our work is aimed at developing a relatively simple
mechanistic ecosystem model that is equitable in detail
and that will run at large scales. One major impediment
to this goal been the lack of an economical description
of plant population and community dynamics. Stochastic

© 1998 Blackwell Science Ltd., Global Change Biology, 4, 581-590



Table 2 The approximation is comprised
of two coupled equations. The first
equation describes the local density of
plants 1 (or carbon in plants) of type X,
size s, and age a since disturbance. This
equation includes the rate of plant
growth G, mortality u, and ageing. Plants
compete for light L, water W, and
nutrient N which differentially affect
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Governing Equations:

Plant dynamics

g—tn(x, s,a,t) = —%[G(w, s,a,t)n(z, s, a,t))

—p(e,s,a,t)n(z,s,a,1) — Zn(z,s,a,1)

Patch dynamics

%p(a,t) = —;—up(a,t) - /\(a,t)p(a,t)

Boundary Conditions:

Initial plant distribution

n(‘z,'S) a, U) = n(xOV SOva())

Initial patch distribution

growth and mortality. The second

p(a,0) = p(ao)

equation describes the density of patches Plant reproduction

p of different ages. This equation

n(z,0,a,t) = G%{jow F(z,s,a,t)n(z,s,a,t)[1 — m(z,s,a,t)]ds

includes patch ageing and disturbance. Plant survival

n(x,s,(),t) = 7(;7:7S,a,t)/p(0,t) f(;)O )\(a,t)p(a,t)n(z,s,a,t)da

There are five boundary conditions. F
is plant fecundity, m is the fraction of

New patches

p((],t) = f(;)O )\(a,t)p(a,t)da

dispersal that is nonlocal, and y is plant
survivorship following disturbance. In
practice, m can be calculated by
integrating a species’ dispersal kernal
over the area outside a patch. Together,
these equations generally describe plant
dynamics (and carbon in plants) compet-
ing on a heterogeneous landscape,
including the effects of landscape dis-
turbance.

Fig. 1 The accumulation of total plant
basal area during succession in a forested
region of Connecticut. The points with
bars illustrate the ensemble mean
predictions plus and minus one standard
deviation, of the forest simulator SORTIE
(Pacala & Deutschman 1995). The curve
depicts a preliminary version of a PDE

Total Basal Area (m?ha'")
(4]
o

approximation of SORTIE that accounts 20 -

for patch age. Note that the approxim- 10

ation, using the same parameter values o

as the simulator, does an excellent job of 0 100

predicting the mean behaviour.

individual-based forest models have been highly success-
ful at simulating the course of succession from submodels
of plant life history (Botkin et al. 1972; Shugart & West
1977; Shugart 1984; Pacala et al. 1993; Pacala et al. 1996;
Shugart and Smith 1996). While some of these models
are not well suited to global change studies (Pacala &
Hurtt 1993), many of the deficiencies can be overcome
by estimating parameters from field data and adding
processes at other scales. One basic impediment to their
use in large-scale studies, however, has been that they
are too complex to run at large scales.

An approximation to the dynamics of a successful indi-
vidual based model would have the features needed to
model vegetation dynamics and would run much faster
than the individual-based counterpart. At the core of our
approach is the general structure of one such approxim-

© 1998 Blackwell Science Ltd., Global Change Biology, 4, 581-590
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ation. Though the derivation of the approximation is bey-
ond the scope of this paper, we summarize it here.
Consider running a stochastic individual based model
on a large plane. We overlay a fine 3D grid and consider
a cell of the grid to be occupied if the top centre point
of a tree’s crown is within the cell. We then seek the
formal expectation of the stochastic process governing
the occupancy of the cells. The general expression for
this expectation is very complicated. One simple case is
the ‘mean-field” case (Pacala & Deutschman 1995), which
assumes no horizontal spatial heterogeneity. That case
was shown to be grossly inadequate for approximating
the mean behaviour of SORTIE (Pacala & Deutschman
1995). The approximation we use here is derived in a
similar fashion, but includes horizontal spatial hetero-
geneity by conditioning on patch successional age.
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The resulting approximation is a system of two coupled
partial differential equations. The form of the equations
is very similar to the model introduced by Levin & Paine
(1974) for intertidal communities. In addition, Kohyama
has successfully used models of a similar form in other
studies of vegetation dynamics (Kohyama 1993; Kohyama
& Shigesada 1995). Of the two equations, one describes
the demography of patches, and the other describes the
dynamics of plants (or the carbon in plants) of different
types and sizes in patches of different ages since disturb-
ance. Boundary conditions include initial conditions,
plant reproduction, the creation of new patches following
disturbance, and the survivorship of plants following
disturbance. Table 2 describes the general set of equations
and boundary conditions.

(@) Total biomass

Figure 1 illustrates the ability of the approximation to
reproduce the ensemble mean behaviour of the forest
simulator SORTIE, using the same functions and para-
meter values. The close agreement between the approxi-
mation and the ensemble mean behaviour of SORTIE
indicates that the approximation scales up from the
individual-level information in the submodels and para-
meter values of the simulator to larger scale predictions
that are of interest in global change studies. The formal
derivation explaining why it does so is analogous to
other scaling problems in physics (Pacala et al. in prep.;
Kubo et al. in prep.). By using parameter values that can
be determined empirically, the approximation will allow
us to conduct error analyses by propagating measure
parameter uncertainty through the model. Many of the

15 20
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Time (y)

(b) Light for Shortest Cohort in Patches

200
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Fig. 2 The five panels in this figure
depict the dynamics of demonstration
version of a new model (a). This panel
shows the community dynamics for the

2000

entire model domain during the run. The
different curves represent the biomass
T different species (points along a

100
Time (y)

Water in Patches

continuous biodiversity axis). (b): The
light availability of the smallest plants
in a patch is very different in young and
old patches. At the end of the model
run, the youngest patches have no tall
plants and there is thus a large amount

200

©

of light hitting the smallest plants. On
the other hand, the oldest patches have

2000 4000

youngest

tall plants which shade the understory.
(c): At the end of the model run, soil
water availability is also very different
on young and old patches. (d): At the end

Soil Water (mm m2)

of the model run, the biomass density in
patches strongly increases with patch
age. (e): This panel shows the frequency

100
Time (y)

150

of distribution of patches of different
ages since disturbance at the end of
the run.
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predictions of the individual-based model SORTIE, for
example, are robust to formal error propagation (Pacala
et al. 1996).

Solely for illustrative purposes, we have constructed
an extremely simple demonstration version of a new
model built around the general structure of this approxi-
mation. It is of an area on the scale of a typical grid cell
in a GCM (e.g. degree X degree). A separate set of
equations would be needed for each grid cell of a GCM
in a large-scale simulation, and the coupling between
those grid cells would have to be added. The model is
aseasonal and has a constant disturbance rate that
removes plants that are taller than a threshold height.
There is a simple bucket hydrological model. Plant growth
is a function only of light and water availability; plants
differ only along a single trade-off axis with root-to-shoot
ratio and water-use efficiency trading off against the
height at which plants stop growing and switch to

(d) Biomass in patches

reproduction. Plant mortality is a function of plant growth
rate; dispersal is global within the grid cell.

Figure 2(a) summarizes the community dynamics for
the entire model domain starting from an initial small
population of juveniles of each species (discrete points
along a continuous biodiversity axis). Note that the
biomass of late successional species increases at the
expense of early successional species during the run.

The model tracks a continuum of subgrid-scale patches
of different ages since disturbance. Each patch has its
own plants and light and water conditions. Figure 2(b)
depicts the dynamics of light availability for the shortest
plants in the youngest and oldest patches within the
grid cell. Figure 2(c) shows the dynamics of soil water
availability in the youngest and oldest patches within
the grid cell. For the end of the model run, Fig. 2(d)
illustrates the biomass in patches as a function of patch
age, and Fig. 2(e) depicts the frequency distribution of
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patch ages. The youngest patches (most recently dis-
turbed) tend to have the highest soil water availability
and the greatest light availability near the ground because
plant biomass is low in the youngest patches and there
are no tall plants there. The subgrid-scale heterogeneity
tracked by this model can be contrasted with the assump-
tion of homogeneous conditions over this scale in other
models.

Our work on the development of a new ecosystem
model that is built around the general structure of the
approximation described above is just beginning. We are
not yet wedded to any particular submodels such as the
physiology that determines plant performance, particular
hydrological or land use models, nor any particular soil
carbon and nutrient model. These will all have to be
developed and added. The approximation that we have
presented provides a template into which these details
can be added and refined.

To develop an ecosystem model, we are drawing on
other available submodels and data, while working on
simplified descriptions of relevant details and processes.
Our modelling of soil carbon and nutrient dynamics has
already been advanced with a dramatically simplified
understanding of the workings of the CENTURY model
(Bolker et al. in press). Progress in plant physiology will
allow us to refine formulations of plant growth and
mortality as mechanistic functions of resource concentra-
tions. A new remote sensing instrument SLICER should
make measurements of the vertical structure of plant
communities over large scales possible. The patch
dynamics component of the model will rely heavily on
disturbance, land use, and land use change data and
model developments.

Discussion

Any evaluation of the currently available terrestrial
models depends on one’s goals or expectations. Available
terrestrial models have proven instructive in many ways.
Most importantly, they have taught us about the nature
and potential importance of large scale biological feed-
backs on climate. However, it would be unrealistic to
expect that these models will ever be able to close the
anthropogenic carbon budget directly. The uncertainties
in the models are likely to remain far greater than what
is needed for the foreseeable future. Closing the global
carbon budget will have to rely on other methods.

As an alternative to other ongoing model development
strategies, we advocate the development of new biological
models that are relatively simple, formulated at an inter-
mediate scale of biological detail, and used to make
predictions at both larger and smaller scales. Model
fitting could be used when necessary, overtly and with
statistics, to calibrate these models with a small subset

of data. The testbed of these models will not be limited
to data on the scale on which the models are formulated;
it could be at both larger and smaller biological and
spatio-temporal scales. Indeed, perhaps the most import-
ant testbed for relevant models in the future will not be
at the global scale under current or modelled future
conditions, but in relatively easily verifiable smaller scale
predictions.

The approach that we have proposed meets several of
the challenges discussed in this paper. Because the model
scales, both its parameter values and predictions are
easily observable. This should relieve some of the impetus
for and concerns with model fitting. Because it is well
suited to address issues of biodiversity and land use,
while being driven by submodels of plant physiology, it
can be mechanistic and equitable in detail. Because it is
a good approximation to an underlying individual based
model, we are in a position to capitalize on the successes
of individual based models without the expense. It will
be exciting to see how successful this approximation is
for plant community models generally. Our challenge
now is to keep the model simple and mechanistic with
the additions of other crucial ecosystem model compon-
ents, as this core develops into a complete ecosystem
model.

Future terrestrial models may begin to emphasize some
relatively underappreciated effects and make some novel
predictions (novel at least for global models). For
example, these new models may predict that most of the
land surface is accumulating carbon at any given time
(through succession) and losing it only catastrophically
(through disturbance). Model predictions can be com-
pared to the results of other approaches such as inversion
studies that attempt to pinpoint the spatial and temporal
distribution of carbon sources and sinks. Legitimate
consideration of issues such as plant allocation, interspe-
cific plant competition, finite plant dispersal, biodiversity,
disturbance, land use, and other phenomena should help
clarify whether models that use equilibrium assumptions
are overly alarmist or overly reassuring. Addressing
all of these issues with confidence will require simple
mechanistic models that scale. Adopting a standard that
model predictions be accompanied by quantitative meas-
ures of uncertainty would not only help to illustrate this
point, but would be beneficial for both the users of these
models and the science of improving them.
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